

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF AN AUDIT
SUBSYSTEM FOR A SEPARATION KERNEL

by

Boon Pin Toh

December 2010

 Thesis Co-Advisors: Cynthia E. Irvine
 Paul C. Clark

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Design And Implementation of an Audit Subsystem
for a Separation Kernel

6. AUTHOR(S) Boon Pin Toh

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ________________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A separation kernel can be used as the foundation of a high assurance system that enforces mandatory security
policies. The contexts in which such separation kernels might be used include support for a distributed trusted path,
high assurance routing, and for a multilevel secure mobile device that supports an extraordinary access partition for
access to sensitive data during a crisis. Separation kernel requirements call for an audit subsystem that helps to
enforce accountability policy by allowing administrators to detect unauthorized activities from the logs collected. The
Least Privilege Separation Kernel (LPSK) being implemented for the Trusted Computing Exemplar (TCX) project did
not have an audit subsystem.

This thesis describes the design and implementation of an audit subsystem for the LPSK. Requirements were
gathered based on an existing specification and protection profile. A variable-length token-based audit log format was
designed to allow flexibility in recording different types of events. Interfaces to other LPSK modules and non-LPSK
modules were designed and a prototype was developed. Testing results show that the prototype supports the LPSK
audit requirements. Hence, this work demonstrates the feasibility of implementing the LPSK audit subsystem based
on the proposed design.

15. NUMBER OF
PAGES

133

14. SUBJECT TERMS Separation Kernel, Audit, High Assurance System

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF AN AUDIT SUBSYSTEM FOR A
SEPARATION KERNEL

Boon Pin Toh
Civilian, Defence Science & Technology, Singapore

BSc, University of Tokyo, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Boon Pin Toh

Approved by: Cynthia Irvine
Thesis Co-Advisor

Paul C. Clark
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A separation kernel can be used as the foundation of a high assurance system that

enforces mandatory security policies. The contexts in which such separation kernels

might be used include support for a distributed trusted path, high assurance routing, and

for a multilevel secure mobile device that supports an extraordinary access partition for

access to sensitive data during a crisis. Separation kernel requirements call for an audit

subsystem that helps to enforce accountability policy by allowing administrators to detect

unauthorized activities from the logs collected. The Least Privilege Separation Kernel

(LPSK) being implemented for the Trusted Computing Exemplar (TCX) project did not

have an audit subsystem.

This thesis describes the design and implementation of an audit subsystem for the

LPSK. Requirements were gathered based on an existing specification and protection

profile. A variable-length token-based audit log format was designed to allow flexibility

in recording different types of events. Interfaces to other LPSK modules and non-LPSK

modules were designed and a prototype was developed. Testing results show that the

prototype supports the LPSK audit requirements. Hence, this work demonstrates the

feasibility of implementing the LPSK audit subsystem based on the proposed design.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PURPOSE OF STUDY..2
C. ORGANIZATION OF PAPER ..2

II. BACKGROUND ..5
A. LEAST PRIVILEGE SEPARATION KERNEL..5

1. Separation Kernel ..5
2. Principle of Least Privileged on Separation Kernel6
3. Trusted Computing Exemplar (TCX) Project7

B. AUDIT OVERVIEW...8
1. Purpose of Audit ..8
2. Log Management Architecture...9
3. Audit Records Standard..10

C. SUMMARY ..10

III. REQUIREMENTS...11
A. SECURITY AUDIT EVENT SELECTION..11
B. SECURITY AUDIT AUTOMATIC RESPONSE14
C. SECURITY AUDIT DATA GENERATION ..15
D. SECURITY AUDIT REVIEW ...16
E. SUMMARY ..17

IV. DESIGN AND IMPLEMENTATION ...19
A. HIGH LEVEL DESIGN..19

1. Overview ...19
2. Starting and Stopping the Audit Subsystem20

B. AUDIT RECORD FORMATS ...22
1. Types of Audit Record Format...22

a. Syslog...22
b. XML...23
c. Database ..23
d. Binary Format...23

2. Selection of an Audit Log Format for LPSK...................................24
3. LPSK Audit Record Format ...25

a. Overview ..25
b. Audit Record Structure ...26
c. Tokens..27

4. Event Classes and Identifier ...37
C. DESIGN OF AUDIT GENERATION AND COLLECTION....................49

1. Overview ...49
2. Determination of Auditable Events..49
3. Audit Module Interfaces..51

D. AUDIT MODULE INTERFACES IMPLEMENTATION........................51

 viii

1. Interfaces to Kernel Modules..51
2. Exported LPSK Audit Interfaces ...65

E. AUDIT BUFFER IMPLEMENTATION ..67

V. TESTING..69
A. DEVELOPMENTAL TESTING..69

1. Testing of Interfaces to Kernel Modules..69
2. Testing of Exported Interfaces to Audit Retrieval..........................76
3. Testing of Audit Buffer..81

B. ACCEPTANCE TESTING...83

VI. CONCLUSION ..89
A. RELATED WORK ..90
B. FUTURE WORK...91

1. Abstraction of Audit Subsystem as a Device91
2. Audit Review ..91
3. Performance Study ..91
4. Implementation of Unfinished Work ...92

C. CONCLUSION ..92

APPENDIX...95
A. DEVELOPMENTAL TESTING..95
B. ACCEPTANCE TESTING...101

LIST OF REFERENCES..111

INITIAL DISTRIBUTION LIST ...113

 ix

LIST OF FIGURES

Figure 1. High Level Overview of Audit Subsystem..19
Figure 2. Audit Subsystem Life Cycle ..21
Figure 3. Header Token...28
Figure 4. Trailer Token ...29
Figure 5. Argument Token ..30
Figure 6. Configuration Vector Token ..30
Figure 7. Device Token ...31
Figure 8. Dseg Token ..32
Figure 9. Eventcount Token ..32
Figure 10. Interrupt Token ..33
Figure 11. MAC Token ...33
Figure 12. Mseg Token ...34
Figure 13. Partition Token...34
Figure 14. Process Token ..35
Figure 15. Return Token ...35
Figure 16. Sequence Token ...35
Figure 17. Signal Token ..36
Figure 18. Subject Token ..37
Figure 19. Text Token...37

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Auditable Events via a Configuration Vector..12
Table 2. Special Actions Taken by Audit Subsystem..14
Table 3. Comparison of Different Audit Log Format..25
Table 4. Token Identifier ...27
Table 5. Event Classes ...38
Table 6. Events in Initialization Class ...39
Table 7. Events in System Class ..40
Table 8. Events in Device Class...42
Table 9. Events in the Process Class..44
Table 10. Events in the Memory Class ..45
Table 11. Events in the Synchronization Class..46
Table 12. Structure Types for Tokens..52
Table 13. Interfaces Provided to LPSK Modules ..55
Table 14. Exported LPSK Audit Interfaces ...65
Table 15. Function Test for audit_enabled ..70
Table 16. Function Test for audit_write_INI_cv ...70
Table 17. Function Test for audit_write_INI_complete ..71
Table 18. Function Test for audit_write_SYS_auditstart ..71
Table 19. Function Test for audit_write_SYS_lpskstart..72
Table 20. Function Test for audit_write_SYS_sak..72
Table 21. Function Test for audit_write_MEM_swapin..73
Table 22. Function Test for audit_write_MEM_msegcreate ...73
Table 23. Function Test for audit_write_SYN_ecawake...74
Table 24. Function Test for audit_write_SYN_procawait...75
Table 25. Function Test for audit_write_SYN_seqticket ..76
Table 26. Function Test for audit_read_next ...77
Table 27. Function Test for audit_read_buffer_size..78
Table 28. Function Test for audit_read_num_rec..79
Table 29. Function Test for audit_read_num_generated ...80
Table 30. Function Test for audit_read_num_overwritten ..81
Table 31. Test for Audit Buffer ...82
Table 32. Acceptance Tests when Audit is Enabled..84
Table 33. Acceptance Tests when Audit is Disabled...86
Table 34. Testing Results of Interfaces to Kernel Modules when Audit is Enabled95
Table 35. Testing Results of Interfaces to Kernel Modules when Audit is Disabled97
Table 36. Testing Results of Interfaces to Audit Retrieval when Audit is Enabled98
Table 37. Testing Results of Interfaces to Audit Retrieval when Audit is Disabled100
Table 38. Results of Acceptance Testing (Successful Events)102
Table 39. Results of Acceptance Testing (Failed Events) ...106
Table 40. Results of Acceptance Testing (Audit Buffer)...108
Table 41. Results of Acceptance Testing when Audit is Disabled109

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

BSM Basic Security Module

CC Common Criteria

CISR Center for Information Systems Security Studies and Research

EAL Evaluation Assurance Level

LPSK Least Privilege Separation Kernel

NIST National Institute of Standards and Technology

SAK Secure Attention Key

SKPP Separation Kernel Protection Profile

TCB Trusted Computing Base

TCX Trusted Computing Exemplar

XML Extensible Markup Language

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank my thesis advisors, professors Cynthia Irvine and Paul

Clark, for the valuable advice and guidance they have provided throughout the thesis

writing process. I would also like to thank David Shifflett for his technical expertise and

assistance.

I would also like to thank my sponsor, the Defence Science & Technology

Agency (DSTA), for supporting my study at Naval Postgraduate School.

Finally, I would like to thank my family and friends for their support and

encouragement.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

To reduce software, hardware and management costs, organizations might choose

to use a single system to handle multiple types of information, which could include

information of different sensitivity levels. In such as system, the assurance that the

security policy is properly enforced to protect against unauthorized information flow is of

utmost importance.

In certain scenarios, timely availability of information could be critical in certain

circumstances, such as during emergencies. For example, the first responders might need

access to sensitive information not normally available to them. A high assurance

multilevel secure device such as the E-device [1] proposed by the Naval Postgraduate

School, supports this kind of operation by allowing the users to switch a platform to an

emergency mode for the duration of the crisis, which gives them the necessary access.

The Naval Postgraduate School Trusted Computing Exemplar (TCX) project [2]

is developing a high assurance platform that that could provide solutions to the use cases

described above. The TCX objectives include a high assurance reference implementation

that includes a Least Privilege Separation Kernel (LPSK). The LPSK isolates the

resources into different partitions and has granular control over the configuration of

information flow between the partitions.

The LPSK is built to comply with the U.S. Government Protection Profile for

Separation Kernels in Environments Requiring High Robustness (SKPP) [3]. The SKPP

is a requirements document that contains the security objectives, functional requirements

and assurance requirements for a separation kernel. The SKPP mandates that any

separation kernel, including the LPSK, that seeks certification against it must minimally

fulfill the audit requirements stated in the protection profile. Separation kernels might

also include additional audit requirements depending on their specific implementations.

National Institute of Standards and Technology (NIST) Special Publication 800-

53 [4] describes the recommended security controls for federal information systems and

 2

organizations. It mandates the implementation of audit and accountability that can

uniquely trace actions back to users. The proposed E-device, for example, must provide a

mechanism to determine whether the first responders are gaining access to data beyond

what is needed to accomplish their missions. An effective audit subsystem could

facilitate an after action review by rebuilding the entire chain of events that occurred

during the crisis.

B. PURPOSE OF STUDY

The purpose of this thesis was to design and implement a prototype of an audit

subsystem for the LPSK. The requirements were gathered from the LPSK functional

specifications [5] and the SKPP. The objective of the design was to seek answers to the

following questions:

 What factors must be considered when designing an audit subsystem for a

separation kernel?

 What information should the audit records contain and in what format?

 What interfaces are needed for the audit subsystem to interact with other

components?

 Can an audit subsystem constructed as part of the LPSK prototype meet the

requirements of the LPSK functional specifications and SKPP?

An audit subsystem prototype of was developed to demonstrate the feasibility of

the design. A test plan was devised and the prototype was tested to ensure it behaves

according to specifications.

C. ORGANIZATION OF PAPER

The thesis is organized into six chapters. Each chapter is systematically organized

to provide an in-depth discussion of the different aspects of the thesis.

 Chapter I introduces this thesis. The motivation and purpose of study were

discussed.

 3

 Chapter II provides the background information on separation kernels, the

Principal of Least Privilege, the Common Criteria and specifically the SKPP,

the TCX project, the purpose of auditing, log management architectures and

audit record standards.

 Chapter III describes the requirements for the LPSK audit subsystem. It

includes discussions of audit record event selection, automatic response, data

generation and data review. It also provides a list of events to be audited.

 Chapter IV describes the design and implementation of the LPSK audit

subsystem. It starts with a presentation of a high level design to introduce the

various components involved in the audit subsystem. This is followed by

detailed discussions of audit record formats and how the components interface

with one another. This chapter ends with a description of the implementation

of the audit subsystem prototype.

 Chapter V describes how the LPSK audit subsystem prototype was tested

according to developmental and acceptance testing plans.

 Chapter VI provides a summary of the work that has been done for this thesis

and a discussion of the challenges faced. Related work is also discussed to

compare the different approaches used in similar projects. This is followed by

a conclusion of the thesis and suggestions for future work.

This chapter introduced the thesis by describing the motivation and purpose of

study, and gave an overview of the organization of the paper. Focus now changes to

background material needed to appreciate the work that follows.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

This chapter provides background information regarding separation kernels and

the necessary audit mechanisms to support them. The concept of a Least Privilege

Separation Kernel will be introduced, followed by a discussion of the purposes and

functions of an audit mechanism.

A. LEAST PRIVILEGE SEPARATION KERNEL

This section discusses the importance of a high assurance system and the benefits

of constructing such a system using a Least Privilege Separation Kernel.

1. Separation Kernel

While Commercial off-the-Shelf (COTS) systems may be sufficient in handling

the security requirements for general tasks in the private and public sectors, they are not

designed to protect highly sensitive information. COTS systems are usually not easily

verifiable, nor are they able to enforce multilevel security policies and address the

problem of subversion. This is where high assurance trusted computing systems are

needed.

One way to design a high assurance system is to put a security kernel at its core.

A security kernel consists of core security components that will mediate all data flow and

accesses to resources. It is made up of hardware and software mechanisms that fall within

the Trusted Computing Base (TCB), which is the totality of all protection mechanism

responsible for enforcing a security policy. In a security kernel, an internal security label

is bound to each exported resource and accesses to the resources are mediated according

to predefined security policies based on these labels. Efforts are usually made to keep the

security kernel small enough to be formally verifiable.

Despite these efforts, some argue that security kernels are too large. Another

architecture is a separation kernel proposed by Rushby [6]. The idea behind a separation

kernel is to provide a single system that emulates a number of distributed systems in

which the components are physically separated into different isolated blocks. Information

 6

flow is described at the block level. The kernel can export the resources to separate

blocks such that the activities in one block will not be visible to other blocks. An

exception might be when information flow between the two blocks is explicitly allowed

in the configuration. Isolation of blocks is usually accomplished by virtualization of

shared resources and implementation of security mechanism controls to enforce policies.

Security is achieved through this isolation and through the mediation of trusted functions.

2. Principle of Least Privileged on Separation Kernel

In a separation kernel, if information flow is explicitly allowed between two

blocks, all subjects in one block can see all the activities in the other block, even if the

original intention is to only allow a small subset of the subjects to access a small subset

of resources in the other block. The problem of describing information flow at the block

level is that the policy configuration is not granular enough to handle individual subject-

to-resource controls. This limitation means that the information flow configuration in a

separation kernel is more likely to violate the Principle of Least Privilege [7]. The

Principle of Least Privilege states that every subject must be able to access only such

resources that are necessary for its legitimate purpose and nothing more than that. It is

one of the major design principles that all secure systems should adhere to.

The Center for Information Systems Security Studies and Research (CISR) at the

Naval Postgraduate School (NPS) is designing and building a separation kernel that will

support the Principle of Least Privilege; it is referred to as the Least Privilege Separation

Kernel (LPSK) [2]. The NPS LPSK extends the concept of separation kernels and adds

mechanisms to allow more granular control. In addition to a policy that describes data

flow between blocks, the LPSK mediates access based on another overriding subject-

resource flow matrix. A subject is only allowed access to a resource if both the inter-

block data flow policy and the subject-resource flow is allowed. The Principle of Least

Privilege is fulfilled by granting the least set of privilege to resources in the LPSK.

3. Common Criteria and Protection Profiles

A high assurance separation kernel must demonstrably meet its security objectives

through a thorough and comprehensive evaluation process. The Common Criteria (CC)

 7

[8] provides a framework in which systems can be evaluated to determine whether they

have met a required level of security functionality and assurance. The CC has been

jointly developed and recognized as a security standard by many countries. When a

system is being developed with the intent of meeting CC criteria, the developers target a

specific Evaluation Assurance Level (EAL). The EAL ranges from EAL1, which is the

lowest level of assurance in the CC framework, to EAL7.

The CC paradigm uses protection profiles as high level requirements documents.

A protection profile contains the security objectives, functional requirements and

assurance requirements for a particular category of system. The target system will be

evaluated using the requirements stated in the protection profile. The U.S. Government

Protection Profile for Separation Kernels in Environments Requiring High Robustness

(SKPP) [3] contains such requirements for evaluating highly trustworthy separation

kernels.

3. Trusted Computing Exemplar (TCX) Project

Even though the benefits of a high assurance Trusted Computing system are

obvious, there has been very little work done on such systems in recent years. The

Trusted Computing Exemplar (TCX) project [3] seeks to fill this gap by providing a

worked example of a highly trusted computing system. The four main activities of the

TCX project are:

 Creation of a prototype framework for rapid high assurance
system development

 Development of a reference implementation trusted
computing component

 Evaluation of the component for high assurance

 Open dissemination of deliverables related to the first three
activities

A LPSK is being developed as part of the development of a reference

implementation for the TCX project. This paper attempts to design and implement an

audit subsystem based on the foundation of the TCX’s LPSK.

 8

B. AUDIT OVERVIEW

Audit is an integral part of any secure system. It generally refers to the

mechanisms and process of recording, examining and reviewing of security-related

operations to support organizational requirements for accountability. A document

produced by the United States National Institute of Standards and Technology (NIST)

that describes minimum security requirements for information systems [9] dictates that

organizations must “create, protect, and retain information system audit records to the

extent needed to enable the monitoring, analysis, investigation, and reporting of unlawful,

unauthorized, or inappropriate information system activity”. It also requires organizations

to “ensure that the actions of individual information system users can be uniquely traced

to those users so they can be held accountable for their actions.” The purpose of audit

actually extends far beyond ensuring accountability. This section summarizes some of

the objectives of a good audit subsystem

1. Purpose of Audit

A good logging mechanism will facilitate the review of access patterns to

individual objects [10]. An audit system must be able to facilitate the discovery of

attempts by intruders to bypass the protection mechanisms, such as failed login attempts.

This can be accomplished by regular inspections of the audit log by a security officer.

The audit system can also act as a building block for other security components such as

an intrusion detection system, which performs near real-time automated analysis of audit

information to detect malicious attacks.

To protect against insider threats, the audit mechanism must also allow for the

discovery of usages patterns that have violated or could be leading to a violation of an

organization’s security policies [10]. It can also be used to monitor attempts to exploit

covert channels. To provide these services, the audit mechanism must be able to track all

users’ operations and the privileges they are assuming.

A good audit system can also act as a deterrent to potential attackers. Such

individuals are less likely to carry out any malicious acts on the system if they know that

 9

all their activities will be detected and recorded by the audit system. To the system

owners, a good audit system also acts as a form of assurance that potential malicious

activity will be discovered.

Besides contributing to security, a good audit mechanism also makes it easier for

system developers and operators to troubleshoot the system in the event of system

malfunction [11]. An administrator can review the audit logs to piece together

information that can help him reconstruct the sequence of events, to identify what went

wrong, and then potentially what needs to be corrected

2. Log Management Architecture

To be able to accomplish the goals of the audit subsystem, an effective way of

generating, collecting and reviewing logs must be in place. A log management

architecture addresses these issues by looking at ways to organize the various

components to process and store audit information. A typical log management

architecture usually consists of the following 3 tiers [12]:

 1st Tier: Log Generation. Audit services run in the individual host/device to

generate audit records. Audit mechanisms are usually part of the TCB of the

system to ensure that they are tamper-proof, always invoked and verifiable.

The events to be audited may be configurable to allow granular control over

the amount of log information to be generated. There is a tradeoff decision

that needs to be made when configuring audit, because a large number of

generated audit records will provide more analytical data, but it will also

require more CPU time and storage space, and may make it possible to hide

malicious activity within an overwhelming amount of non-malicious activity.

The audit services will make the log data available to log servers in the second

tier through a protected network connection or other secure means.

 2nd Tier: Log Analysis and Storage. This tier consists of log servers capable

of collecting and storing log data from multiple hosts. Log data can be stored

on the log servers themselves or on separate database servers.

 10

 3rd Tier: Log Monitoring. This tier consists of consoles and tools that allow

operators to monitor and review log data Tools can range from simple

applications that allow operators to search and display audit records to IDS

applications that perform real time monitoring of events.

The focus of this paper is to design the first tier log generation mechanism of the LPSK

and to make provisions for the log data to be stored and retrieved for review in the second

and third tiers of a log management architecture.

3. Audit Records Standard

An auditing system records important system events, where the data associated

with each event is saved in the form of some kind of record. Even though most modern

systems implement some form of audit, the industry as a whole lacks standards on the

format of the audit records. A review of the formats used by the major operating systems

today shows that almost all systems use their own proprietary audit record formats. This

incompatibility often results in difficulties in log management, especially when events

from different systems need to be combined [12]. This paper will give a more thorough

discussion of the pros and cons of the different types of audit record format in Chapter 4.

C. SUMMARY

This chapter has provided background on the basic principles of the LPSK and

how it contributes to the construction of high assurance systems. It has also given an

overview of the purpose for the architecture of audit mechanisms for such a system.

 11

III. REQUIREMENTS

The TCX LPSK functional specification [5] includes a list of requirements for its

audit subsystem. As the LPSK is designed to be compliant with the SKPP [3], its audit

subsystem must also fulfill the requirements of the SKPP. Below is a list of items that are

mentioned in the TCX LPSK functional specifications and SKPP:

 Security audit event selection,

 Security audit automatic response,

 Security audit data generation, and

 Security audit review

Each of the above will be described in greater detail below.

A. SECURITY AUDIT EVENT SELECTION

Logging too little information is definitely not desirable, but logging too much

may also be a problem. Logging will increase system overhead in terms of both storage

space and processor time. This may result in a reduction in performance and significant

reduction of storage space available for other processes in a system having tight resource

constraints. Having too much audit log information may also increase the time needed for

the operators to review the audit data. Thus, there is a need for the audit subsystem to

offer the flexibility for administrators to specify the level of logging to be done on the

system. This should be determined based on the operational requirements.

In the LPSK, the granularity of auditable events is defined using a configuration

vector. A configuration vector is read by the LPSK during the kernel initialization phase

and contains a set of information that describes the initial secure state of the LPSK

platform and how the LPSK shall behave during the run-time. It also contains

configurable options for the audit subsystem.

The SKPP requires that the separation kernel be able to include or exclude events

from the runtime audited events based on the following attributes:

 12

 Resource identity,

 Subject identity,

 Event type,

 Success of auditable security events, and

 Failure of auditable security events

Table 1 shows the optional auditable events that can be switched on or off based

on the different choices in the configuration vector.

Table 1. Auditable Events via a Configuration Vector

Auditable Events Attributes

When a signal is sent by a particular subject (success,
failure, or both)

Subject identity

When a signal is received by a particular subject Subject identity

When a software interrupt is invoked by a particular
subject

Subject identity

When a device read is requested by a particular subject
(success, failure, or both)

Subject identity

When a device write is requested by a particular subject
(success, failure, or both)

Subject identity

When a device configuration is requested by a particular
subject (success, failure, or both)

Subject identity

When the read of an eventcount is requested by a
particular subject (success, failure, or both)

Subject identity

When the advance of an eventcount is requested by a
particular subject (success, failure, or both)

Subject identity

When an await on an eventcount is requested by a
particular subject (success, failure, or both)

Subject identity

When a process awakes from an await on an
eventcount

Subject identity

When the ticket of a sequencer is requested by a
particular subject (success, failure, or both)

Subject identity

 13

When a read operation of a particular device is requested
(success, failure, or both)

Device identity

When a write operation of a particular device is
requested (success, failure, or both)

Device identity

When a configuration operation for a particular device is
requested (success, failure, or both)

Device identity

When a ticket of a sequencer is requested (success,
failure, or both).

Sequencer Event

When an advance of an eventcount is requested
(success, failure, or both)

Eventcount Event

When a read of an eventcount is requested (success,
failure, or both)

Eventcount Event

When an await on an eventcount is requested (success,
failure, or both)

Eventcount Event

When a wakeup on an eventcount occurs. Eventcount Event

When a particular segment is swapped in (success,
failure, or both)

Memory segment Event

When a particular segment is flushed (success, failure,
or both)

Memory segment Event

When a particular segment is swapped out (success,
failure, or both)

Memory segment Event

When an mseg is created Memory segment Event

Other configurable audit attributes in the configuration vector include:

 Enabling or disabling of audit

 Size of the audit buffer

 Action when audit buffer is full

o Overwrite oldest record,

o Halt the system, or

o Shutdown the system

 14

B. SECURITY AUDIT AUTOMATIC RESPONSE

The SKPP requires that the LPSK run a suite of self tests to verify both the

hardware and software components of the kernel during start-up, periodically during

normal operation, and during recovery. The audit subsystem shall record each of the

failures and if required, the actions taken by the LPSK to recover from the failure. The

audit subsystem may also be required to perform special actions such as halting the

system upon detection of a critical failure during both the LPSK initialization and run-

time phases. Table 2 shows a list of actions to be performed by the audit subsystem.

Table 2. Special Actions Taken by Audit Subsystem

Events Actions to be taken by audit subsystem

Any audited event that causes the LPSK to

halt the system

Display an informative message on the

screen prior to the halt

Size of the audit buffer is specified outside

the valid range

Display an informative message on the

screen and halt the system

Failure of LPSK self-test Record actions taken by the LPSK to try to

correct the failure

Unsuccessful binding of security attributes

to individual partitions

Display an informative message on the

screen and halt the system

Attempt to recover the LPSK to a secure

state

Record actions taken by the LPSK to try to

recover (or halt the system)

Detection of invalid value or set of values

in binary configuration vector during LPSK

initialization

Halt the system

Inability of LPSK to return to a secure state

after failure of a security function

Halt the system

 15

C. SECURITY AUDIT DATA GENERATION

Based on the SKPP and LPSK requirements, a list of events has been identified as

auditable. The audit subsystem shall be able to generate an audit record for each auditable

event. In addition to the optional auditable events mentioned in section A, the following

is a list of mandatory events that must be audited if audit is enabled in the configuration

vector.

 Values of configuration vector

 Unsuccessful binding of security attributes to individual partitions, subjects,

and non-subject exported resources

 The assignment of a default value to the configuration data during LPSK

initialization

 The detection during LPSK initialization of an invalid value or set of values in

a binary configuration vector

 The successful completion of LPSK initialization

 Successful start-up and shutdown of the LPSK audit mechanism by the LPSK

Initializer

 Actions taken because of a failure of an LPSK self-test

 All requests for a configuration change

 The success of each startup of the LPSK

 A failure of an LPSK self test

 Any detected loss of secure state.

 Action taken to attempt to recover the LPSK to a secure state

 The inability of the LPSK to return to a secure state after failure of a security

function.

 Changes to the LPSK time source

 16

 Detection of a SAK invocation.

 The shutdown, power down or halt of a platform.

 Detection of duplicate MAC addresses

D. SECURITY AUDIT REVIEW

Audit records may contain sensitive information about the system. Thus, the audit

services shall ensure that the records are only exported to authorized subjects. The audit

subsystem shall store the audit records in an internal audit buffer and provide an external

interface so that authorized subjects may obtain the buffered audit records. The LPSK

functional specification requires the audit subsystem to provide call interfaces to retrieve

the following information:

 Size of the audit buffer,

 Oldest buffered audit record, and

 Audit statistics

o Number of audit records overwritten

o Number of audit records generated

Audit records are not useful if they cannot be reviewed in a timely manner. To

ensure that the relevant parties are able to interpret each audit record, a standard audit

record format shall be defined and used consistently in the system. This record format

shall be properly documented and made available to all relevant parties that need to

handle audit records.

The SKPP also mandates that an audit record shall minimally contain the

following information:

 Data and time of an event,

 Type of an event,

 Subject Identity,

 17

 Success or failure of the event, and

 The identity of the relevant resource (where applicable)

E. SUMMARY

This chapter provided an overview of the various requirements for the LPSK audit

subsystem based on the SKPP and TCX LPSK functional specification documents. A

design and implementation to address the requirements is discussed in the next chapter.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

IV. DESIGN AND IMPLEMENTATION

This chapter starts with an overview of the design of the audit subsystem

components. It is followed by a discussion on the audit record format and design of the

audit record generation and collection. The fourth section describes the implementation

of the audit module interfaces. The last section describes the implementation of the

kernel’s audit buffer.

A. HIGH LEVEL DESIGN

This section presents a high level view of the LPSK audit subsystem and

discusses the considerations and choices made in the design of the audit subsystem and

its various components.

1. Overview

Figure 1 shows a high level overview of the interactions between the audit

subsystem modules and the other system components.

Figure 1. High Level Overview of Audit Subsystem

 20

The LPSK platform is based on an Intel x86 processor, which consists of 4

Privilege Levels (PL), ranging from PL0, which is the most privileged, to PL3, which is

the least privileged. The LPSK audit subsystem resides in PL0. The audit events are

detected by other kernel modules, which then communicates relevant event information

to the audit subsystem through a module interface.

The Audit Collector module receives the audit request from the kernel functions

and determines whether to record the audit information based on the configured audit

policy. If the event is to be audited, the Audit Collector module will format the audit

record in the appropriate binary format and send it to the Audit Buffer.

The Audit Buffer provides temporary storage for the audit records before they are

read by an authorized subject and transferred to a log file in a secondary storage space.

Due to the limited space in the Audit Buffer, old records that have been read by an

authorized subject are erased from the Audit Buffer so that memory space can be reused

to store new records.

The Audit Retrieval and Viewing Application currently resides in PL3 so that it is

able to make full use of the richer range of services from the underlying layers to provide

a user interface to an administrator to view and manage audit records. The Retrieval and

Viewing Application issues requests to the Audit Collector module which will then

retrieve the oldest record from the Audit Buffer and forward it to the application for

further processing.

2. Starting and Stopping the Audit Subsystem

Figure 2 shows the sequence of starting, running and stopping of the audit

subsystem.

 21

Figure 2. Audit Subsystem Life Cycle

1. The user selects a configuration vector for the LPSK. The LPSK Initializer

will read the binary data of the configuration vector and configure the system

state according to what is specified inside the configuration vector.

2. The LPSK Initializer will start the Audit Collector, passing configuration data

to it. The configuration vector contains information such as the size of the

Audit Buffer and types of events to be audited.

3. The Audit Collector initializes its internal variables and creates an audit buffer

based on values specified in the configuration vector.

4. The Audit Collector will then enter into the ready state and is able to accept

audit requests. Because the Audit Collector needs to start collecting records

during the LPSK initialization phase, it must be started at the earliest possible

stage.

5. The Audit Collector will continue to respond to audit requests throughout the

entire LPSK runtime phase and during the LPSK shutdown phase. In order to

 22

give ample time for the Audit Retrieval to retrieve all the records that are

remaining in the Audit Buffer, the Auditor Collector should be among the last

processes to shutdown [5]. In addition, the Audit Collector can also initiate a

time delay before shutting down the audit subsystem. The value of the time

delay can be configured in the configuration vector.

B. AUDIT RECORD FORMATS

A standard audit log format is important to allow the different components of a

system to exchange and interpret audit records correctly. However, a survey of audit log

formats used by the common operating systems shows that most of them use different

proprietary formats. There is no de facto standard in the industry today. The many

different types of log formats in use today include text-based, Extensible Markup

Language (XML) [13], databases and binary files. Some of these formats (such as text-

based and XML files) are designed to be read by humans, while others (such as databases

and binary files) are not. The section below provides a discussion and comparison of the

popular types of log formats. Criteria for audit format selection for the LPSK are

discussed. This is followed by discussion of the LPSK audit record format.

1. Types of Audit Record Format

The various types of audit record formats are described below.

a. Syslog

Text-based formats can be in the form of a comma-separated or tab-

separated text file, which can be proprietary in nature or it can follow the syslog format

[14]. Syslog was initially developed as part of the Sendmail project [15] but due to its

ease of use, has been widely used by many applications, especially in UNIX systems.

A syslog record consists of 3 parts. The first part contains the identity of

the source and severity level. The second part contains a timestamp and the hostname

while the third part contains the actual log message content. There are, however, no

standards for what information is required or how the information should be formatted. It

is usually just a string of text that describes what happened. While this provides the

 23

flexibility to decide what information to include inside the content, different

implementations may lead to a difficulty in interpreting the log entries. This greatly limits

its potential use as a standard log format for audit log exchange among different systems.

The fact that the log content is in text format means that while they are

highly readable by humans, log records cannot be easily parsed by machines. Processing

and filtering of syslog records based on the attributes of the events can be challenging. A

text-based format also takes up much more space compared to a binary format. This

could cause significant problems for platforms with limited resources, such as handheld

devices.

b. XML

XML [13] is a markup language to represent text data in a well-structured

way. It is still text-based, but due to the highly structured nature of an XML document, it

is meant to be both human-readable and parseable by machines. It is generally used to

exchange information among different applications. The advantages of logging in XML

format include ease of viewing, processing, and is well understood by many applications.

There is, however, a lack of an open standard on a XML log formats. XML files also take

up much more space than a binary file and require a high amount of computational

resources to parse the file, making it a poor choice for platforms with limited resources.

c. Database

Logs can be stored directly into relational databases. Databases provide

advanced indexing and search capabilities that text or binary log files are not able to

provide. But the need for a database server means that it is highly unlikely to be used as a

native log format in the kernel. It is more suitable to be used by higher level applications

rather than by operating systems.

d. Binary Format

A binary format is commonly used by the major operating systems. Some

of the examples are Event Log File Format [16] used by Microsoft Windows operating

systems and Basic Security Module (BSM) [17] used by Solaris. The main advantage of a

 24

binary log file is that it is small when compared to a text-based format. It is also highly

flexible with regard to the type of data that it can store. Also, binary logs can be

formatted in a way that allows for easy parsing by machines. The main drawback of a

binary format is that it requires a log viewer application to translate the binary bits to

human-readable text so that the administrator can review the logs.

2. Selection of an Audit Log Format for LPSK

In this section, the criteria for selection of the LPK audit record format are

presented and audit record types are compared for suitability in the LPSK.

One of the most important factors when considering an audit log format for the

LPSK is that it must be lightweight in terms of both storage and computational resources.

A kernel should be small and contain only the essential services. Making the audit log

small and simple also allows the deployment of the LPSK on handheld devices that have

limited storage and computational resources.

Based on the survey of the different log formats, binary logs have been selected as

the best choice for the LPSK because the amount of space required for collection of audit

records is significantly smaller than the other log formats, and the binary format can be

parsed easily. The Syslog and XML formats are attractive options for remote logging

when logs need to be transferred from multiple hosts to a central log server. The binary

logs collected by the LPSK can be converted to these formats at a later stage if there is

such a requirement. Solaris also takes a similar approach by providing a praudit [17]

utility to convert BSM audit records to human-readable text or XML format when

required. A database can also be used to store audit records in a remote log server. Table

3 gives a comparison of the various log formats.

 25

Table 3. Comparison of Different Audit Log Format

 Syslog XML Database Binary

Human-

Readable

Yes Yes No No

Easily

Parseable

No Yes Yes Yes

Understood by

multiple

applications

Yes Yes No No

Size Large Large Depends Small

Computational

Resource

Requirement

Low High High Low

3. LPSK Audit Record Format

Details of the LPSK audit record format are presented in this subsection.

a. Overview

After comparing the different audit record formats, a binary based log

format was chosen as the format for the LPSK. A study was conducted to determine

whether any of the existing binary audit record formats can be used directly by the LPSK,

but none of them is entirely suitable because most are designed to work in a specific

operating system environment. For example, BSM includes classes of log records

describing events related to the UNIX file system that are not relevant in the LPSK.

Similarly, there are events specific to the LPSK that cannot be described by any of the

existing audit record formats. Thus, there is a need to design a set of record formats

specifically for the LPSK. The BSM Format was used as a reference model when

 26

designing the audit log format for the LPSK due to the fact that it is flexible and simple to

implement, and that the LPSK can benefit from its design.

b. Audit Record Structure

Each audit record represents an event that has been selected for auditing

according to the configuration vector. An audit record is made up of a sequence of

tokens, each describing an attribute of the event that the audit record describes. Each

record begins with a header token and ends with a trailer token. There could be one or

more tokens of other types in between the header and trailer tokens.

Each token starts with a one-byte token identifier, which indicates the type

of attributes the token carries. There could be one or more attributes in the token

depending on the token type. As a result, the length of each type of token varies. The

varying token length approach of the audit record format allows a high degree of

flexibility in constructing records for different types of events with different attributes. It

also ensures that no space is wasted as in the case of a fixed length record that allocates

the maximum amount of storage space for each record. This helps to keep the audit log

small.

The following is an example of an audit record that describes the detection

of a Secure Attention Key (SAK) invocation.

13 bytes 2 bytes 5 bytes

Header Token Partition Token Trailer Token

The header token contains the event identifier, timestamp and the length of

the entire record. The event identifier indicates the type of event the record describes. The

partition token contains information about the partition from which the SAK is invoked

and the trailer token contains a checksum to detect accidental modifications of the audit

record.

 27

c. Tokens

A total of 17 tokens have been defined in order to describe the various

auditable LPSK events. A header token and a trailer token will be found in all audit

records. The other tokens are used when additional attributes are required in the record.

Each token starts with a one-byte unique token identifier to allow the parser to know the

type of data that follows. Table 4 shows the LPSK token identifiers.

Table 4. Token Identifier

Token Token Identifier (in hexadecimal)

Header Token 0x00

Trailer Token 0xFF

Argument Token 0x10

Configuration Vector Token 0x11

Device Token 0x12

Dseg Token 0x13

Eventcount Token 0x14

Interrupt Token 0x15

MAC Token 0x16

Mseg Token 0x17

Partition Token 0x18

Process Token 0x19

Return Token 0x1A

Sequence Token 0x1B

Signal Token 0x1C

Subject Token 0x1D

Text Token 0x1E

 28

The following subsections describe each token in more detail

(1) Header Token. A header token marks the beginning of each

audit record. It contains the following fields in the order that they are listed.

 Header token identifier (1 byte),

 Audit record length, in bytes (2 bytes),

 Audit record structure version number (2 bytes),

 Event identifier to indicate the type of audit event

 Event modifier to provide additional information about the

event (2 bytes), and

 Timestamp of the creation of the audit record (4 bytes)

1 byte 2 bytes 2 bytes 2 bytes 2 bytes 4 bytes

Token

identifier

Record

length

Version

number

Event

identifier

Event

modifier

Timestamp

Figure 3. Header Token

The header token identifier is given a predefined value of 0. Audit

record length stores the total number of bytes the entire record contains, including the

header and the trailer tokens. As the length of each record varies, audit record length

allows the parser to know how many bytes to read for the record. The version number is

set aside to facilitate future modification to the record structure, so that a parser can parse

newer and older record structures.

Each type of auditable event is described using a unique event

identifier. The event modifier is used as an additional flag to provide more detailed

descriptions of the events. For example, when recording the “successful start-up and

shutdown of LPSK audit mechanism”, a modifier with a value of zero (0) indicates that it

is a start-up event, while a modifier with a value of one (1) indicates that it is a shutdown

event.

 29

The LPSK uses the number of seconds since the start of the IEEE

POSIX epoch [18] to keep track of date and time for its kernel. The epoch time system

records date and time in terms of number of seconds elapsed since January 1 1970

00:00:00 UTC. Using 4 bytes for the timestamp means this audit record structure can

keep track of time till the year 2106.

(2) Trailer Token. The trailer token marks the end of a record.

It contains the following fields in the order that they are listed.

 Trailer token identifier (1 byte),

 Audit record length, in bytes (2 bytes),

 CRC32 checksum of the entire record (4 bytes)

1 byte 2 bytes 4 bytes

Token identifier Record length CRC32 checksum

Figure 4. Trailer Token

The record length is contained in both the header and trailer

tokens. The purpose of this redundancy is to allow for the forward and backward parsing

of the records. The CRC32 checksum is appended to the end of each record to support

checks for accidental corruption of the record.

(3) Argument Token. The argument token contains information

about argument values passed to a kernel function. It contains the following fields in the

order that they are listed.

 Argument token identifier (1 byte),

 Argument identifier (1 byte),

 Argument value (4 bytes),

 Length of optional text descriptive text string (1 byte), and

 30

 Optional text string (n bytes where 0 ≤ n ≤ 255)

1 byte 1 byte 4 bytes 1 byte n bytes

Token identifier Argument

identifier

Argument value Text length Text

Figure 5. Argument Token

A function call may contain several parameters. Thus, an audit

record may also contain several argument tokens. In this case, the argument identifier

indicates which parameter it corresponds to. The optional text string provides the

flexibility of adding text descriptions to the arguments if needed.

(4) Configuration Vector Token. The configuration vector

token contains information to identify the configuration vector used to initialize the

LPSK. It contains the following fields in the order that they are listed.

 Configuration vector token identifier (1 byte),

 Text length (1 byte),

 Descriptive text (n bytes where 0 ≤ n ≤ 255), and

 MD5 hash (16 bytes)

1 byte 1 byte n bytes 16 bytes

Token identifier Text length Descriptive text MD5 hash

Figure 6. Configuration Vector Token

The descriptive text contains the human readable description of the

configuration vector. The MD5 hash value of the entire binary configuration vector

provides a means to correctly identify the configuration vector that is used to initialize the

LPSK.

 31

(5) Device Token. The device token contains information

about the device. It contains the following fields in the order that they are listed.

 Device token identifier (1 byte),

 Major number (1 byte),

 Minor number (1 byte),

 Type (1 byte), and

 Partition ID (1 byte)

1 byte 1 byte 1 byte 1 byte 1 byte

Token identifier Major number Minor number Type Partition ID

Figure 7. Device Token

The major number indicates the device category. The minor

number refers to the specific instantiation of a device. The type attributes can be either

CONTROL or DATA depending on how the device was accessed. The partition ID is the

home partition of the device.

(6) Dseg Token. The dseg token contains information about the

data segments. It contains the following fields in the order that they are listed.

 Dseg token identifier (1 byte),

 Privilege level assigned to dseg (1 byte),

 Partition ID (1 byte),

 Path length (1 byte), and

 Path (n bytes)

 32

1 byte 1 byte 1 byte 1 byte n bytes

Token identifier Privilege level Partition ID Path length Path

Figure 8. Dseg Token

A dseg is a data segment in a process’ address space that is

initialized from a secondary storage segment. The maximum number of dsegs defined in

the LPSK specification is 64. Each dseg is identified by a unique identifier. The privilege

level is the Intel PL to which the dseg was allocated during initialization. The partition ID

is the home partition of dseg. The path attribute contains the path to the secondary storage

segment, while the path length indicates the length of the path.

(7) Eventcount Token. The evencount token contains

information about the eventcount. It contains the following fields in the order that they

are listed.

 Eventcount token identifier (1 byte),

 Eventcount ID, and

 Eventcount value

1 byte 1 byte 4 bytes

Token identifier Eventcount ID Eventcount value

Figure 9. Eventcount Token

The eventcount is used for inter-process synchronization. A

maximum of 64 platform-wide eventcounts is possible, and each has a unique eventcount

ID and stores a 32-bit number. The eventcount value is the value of the eventcount at the

time of the audited event.

(8) Interrupt Token. The interrupt token contains information

about the interrupts. The Intel x86 architecture provides a total of 256 interrupts, where

 33

each is identified by a unique interrupt number. The token contains the following fields in

the order that they are listed.

 Interrupt token identifier (1 byte), and

 Interrupt number (1 byte)

1 byte 1 byte

Token identifier Interrupt number

Figure 10. Interrupt Token

(9) MAC Token. The MAC Token contains information about

the Media Access Control (MAC) address. It contains the following fields in the order

that they are listed.

 MAC token identifier (1 byte), and

 MAC address (6 bytes)

1 byte 6 bytes

Token identifier MAC address

Figure 11. MAC Token

(10) Mseg Token. The Mseg token contains information about

the memory segment. It contains the following fields in the order that they are listed.

 Mseg token identifier (1 byte),

 Mseg identifier (1byte),

 Size of the mseg (4 bytes),

 Privilege level assigned to mseg (1 byte), and

 Partition ID (1 byte)

 34

1 byte 1 byte 4 bytes 1 byte 1 byte

Token identifier Mseg identifier Size Privilege level Partition ID

Figure 12. Mseg Token

An mseg is an Intel x86 data segment that is created in a process’

address space. The maximum number of msegs defined in the LPSK specification is 32.

Each mseg is identified by a unique identifier. The size is specified during initialization.

The privilege level is the Intel PL to which the mseg was allocated during initialization.

The partition ID refers to the home partition that the mseg belongs to.

(11) Partition Token. A partition token contains information to

identify a partition. It contains the following fields in the order that they are listed.

 Partition token identifier (1 byte), and

 Partition ID (1 byte)

1 byte 1 byte

Token identifier Partition ID

Figure 13. Partition Token

The maximum number of partitions defined in the LPSK

specification is 256. Each partition is identified by a unique identifier called the partition

ID.

(12) Process Token. A process token contains information to

identify a process. It contains the following fields in the order that they are listed.

 Process token identifier (1 byte),

 Partition ID (1 byte), and

 Process Identifier (1 byte)

 35

1 byte 1 byte 4 bytes

Token identifier Partition ID Process identifier

Figure 14. Process Token

(13) Return Token. The return token contains the return status of

a kernel function call. It contains the following fields in the order that they are listed.

 Return token identifier (1 byte), and

 Return value (4 bytes)

1 byte 4 bytes

Token identifier Return value

Figure 15. Return Token

(14) Sequencer Token. The sequencer token contains

information to identify a sequencer. It contains the following fields in the order that they

are listed.

 Sequencer token identifier (1 byte),

 Sequencer identifier (1 byte), and

 Sequencer value (4 bytes)

1 byte 1 byte 4 bytes

Token identifier Sequencer identifier Sequencer value

Figure 16. Sequence Token

A sequencer is used for inter-process synchronization. A maximum

of 64 platform-wide sequencers is possible in the LPSK. Each is identified by a unique

 36

identifier. The sequencer value is the value of the sequencer at the time of the audited

event.

(15) Signal Token. The signal token contains information to

identify a signal channel. It contains the following fields in the order that they are listed.

 Signal token identifier (1 byte), and

 Signal channel identifier (1 byte)

1 byte 1 byte

Token identifier Signal channel identifier

Figure 17. Signal Token

A signal is an abstract communication mechanism implemented by

the LPSK to allow a subject to communicate with another subject via the recipient’s

signal channel. Each subject can have a maximum of 32 signal channels. A signal token

is usually used together with subject tokens to provide information about the sender and

receiver of a signal.

(16) Subject Token. The subject token contains information to

identify a subject. It contains the following fields in the order that they are listed.

 Subject token identifier (1 byte),

 Partition ID (1 byte),

 Process identifier (4 bytes), and

 Hardware Privilege level (1 byte)

1 byte 1 byte 4 bytes 1 byte

Token identifier Partition ID Process Identifier Hardware Privilege

level

 37

Figure 18. Subject Token

The hardware privilege level is the Intel PL to which the subject

was allocated during initialization.

(17) Text Token. The text token describes a text string. It

contains the following fields in the order that they are listed.

 Text token identifier (1 byte),

 Length of the text string (1 byte), and

 Text string (n bytes where 0 ≤ n ≤ 255)

1 byte 1 byte n bytes

Token identifier Length of text Text

Figure 19. Text Token

4. Event Classes and Identifier

There are altogether 45 auditable events, and each of them has a unique two-byte

event identifier. They are categorized into a number of different classes for ease of

management. The first byte of the event identifier indicates the class and the second byte

indicates the event number within the class. For example, the event “successful

completion of LPSK initialization” belongs to the Initilization class and has a class

identifier of 1. As it is the 5th event within the class, it is being assigned an event

identifier of 0x0105 (in hexadecimal). Table 5 provides information about the event

classes.

 38

Table 5. Event Classes

Class Name Description Class Identifier

(in hexadecimal)

Initialization Events that occur during the initialization

phase of the LPSK

0x01

System System-wide events that occur during the

runtime phase of the LPSK

0x02

Device Events related to devices 0x03

Process Events related to process management 0x04

Memory Events related to memory management 0x05

Synchronization Events related to resources used for

synchronization such as eventcount and

sequencer.

0x06

Table 6 shows the list of events in the Initialization class, their corresponding

event identifiers and sequence of tokens used to construct them.

 39

Table 6. Events in Initialization Class

Events in Initialization Class Sequence of

Tokens

Event ID

(in hex)

Identifying information about configuration vector header

conf. vector

trailer

0x0101

Unsuccessful binding of security attributes to individual

partitions, subjects, and non-subject exported resources.

Headertext

trailer

0x0102

The assignment of a default value to the configuration

data during LPSK initialization.

header

text

trailer

0x0103

The detection during LPSK initialization of an invalid

value or set of values in a binary configuration vector.

headertext

trailer

0x0104

The successful completion of LPSK initialization header

trailer

0x0105

Table 7 shows the list of events in the System class, their corresponding event

identifiers and the sequence of tokens used to construct them.

 40

Table 7. Events in System Class

Events in System Class Sequence of

Tokens

Event ID

(in hex)

Successful start-up and shutdown of the LPSK audit

mechanism by the LPSK Initializer. (Event modifier: 0

indicates a start-up, and 1 indicates a shutdown)

header

trailer

0x0201

Actions taken because of a failure of an LPSK self-test.

This will result in a halt of the platform.

header

text

trailer

0x0202

All requests for a configuration change.

header

subject

argument

return

trailer

0x0203

The success of each startup of the LPSK. header

trailer

0x0204

A failure of an LPSK self test.

header

text

trailer

0x0205

Any detected loss of secure state.

header

text

trailer

0x0206

 41

Action taken to attempt to recover the LPSK to a secure

state.

header

text

trailer

0x0207

The inability of the LPSK to return to a secure state after

failure of a security function.

header

text

trailer

0x0208

Changes to the LPSK time source.

header

argument

subject

return

trailer

0x0209

Detection of a SAK invocation.

header

partition

trailer

0x020A

The shutdown, powerdown or halt of a platform. (Event

modifier: 0 indicates a shutdown, 1 indicates a

powerdown and 2 indicates a halt)

header

subject

trailer

0x020B

Table 8 shows the list of events in the Device class, their corresponding event

identifiers and sequence of tokens used to construct them.

 42

Table 8. Events in Device Class

Events in Device Class Sequence of

Tokens

Event ID

(in hex)

When a read operation of a particular device is requested

(success, failure, or both)

header

subject

device

return

trailer

0x0301

When a write operation of a particular device is

requested (success, failure, or both)

header

subject

device

return

trailer

0x0302

When a read meta-data operation for a particular device

is requested (success, failure, or both)

header

subject

device

argument

return

trailer

0x0303

When a write meta-data operation for a particular device

is requested (success, failure, or both)

header

subject

0x0304

 43

 device

argument

return

trailer

Duplicated MAC address header

partition

mac

trailer

0x0305

When a device read is requested by a particular subject.

(success, failure, or both)

header

subject

device

return

trailer

0x0306

When a device write is requested by a particular subject.

(success, failure, or both)

header

subject

device

return

trailer

0x0307

When a device configuration is requested by a particular

subject. (success, failure, or both)

header

subject

device

argument

return

0x0308

 44

trailer

Table 9 shows the list of events in the Process class, their corresponding event

identifiers and sequence of tokens used to construct them.

Table 9. Events in the Process Class

Events in Process Class Sequence of

Tokens

Event ID

(in hex)

The success or failure of starting a process. header

process

trailer

0x0401

The termination of a process.

header

process

trailer

0x0402

When a signal is sent by a particular subject (success,

failure, or both)

header

subject (sender)

signal

subject (recipient)

return

trailer

0x0403

When a signal is received by a particular subject header

subject (recipient)

signal

subject (sender)

0x0404

 45

return

trailer

When a software interrupt is invoked by a particular

subject

header

subject

interrupt

return

trailer

0x0405

Table 10 shows the list of events in the Memory class, their corresponding event

identifiers and the sequence of tokens used to construct them.

Table 10. Events in the Memory Class

Events in Memory Class Sequence of

Tokens

Event ID

(in hex)

Attempt to swapin a dseg exceeded memory quota.

header

subject

dseg

trailer

0x0501

Attempt to create an mseg exceeded memory quota. header

subject

mseg

trailer

0x0502

When a particular segment is swapped in (success,

failure, or both)

header

subject

dseg

0x0503

 46

return

trailer

When a particular segment is flushed (success, failure,

or both)

header

subject

dseg

return

trailer

0x0504

When a particular segment is swapped out (success,

failure, or both)

header

subject

dseg

return

trailer

0x0505

When a mseg is created

header

subject

mseg

return

trailer

0x0506

Table 11 shows the list of events in the Synchronization class, their corresponding

event identifiers and the sequence of tokens used to construct them.

Table 11. Events in the Synchronization Class

Events in Synchronization Class Sequence of

Tokens

Event ID

(in hex)

 47

When a process awakes from an await on an eventcount

(success, failure, or both)

header

subject

eventcount

return

trailer

0x0601

When an advance of an eventcount is requested

(success, failure, or both)

header

subject

eventcount

return

trailer

0x0602

When a read of an eventcount is requested (success,

failure, or both)

header

subject

eventcount

return

trailer

0x0603

When an awake of an eventcount is requested (success,

failure, or both)

header

subject

eventcount

return

trailer

0x0604

When a wakeup on an eventcount is requested (success,

failure, or both)

Header

subject

eventcount

0x0605

 48

return

trailer

When a ticket of a sequencer is requested (success,

failure, or both)

header

subject

sequencer

return

trailer

0x0606

When the read of an eventcount is requested by a

particular subject (success, failure, or both)

header

subject

eventcount

return

trailer

0x0607

When an advance of an eventcount is requested by a

particular subject (success, failure, or both)

header

subject

eventcount

return

trailer

0x0608

When an await on an eventcount is requested by a

particular subject (success, failure, or both)

header

subject

eventcount

return

trailer

0x0609

When the ticket of a sequencer is requested by a header 0x060A

 49

particular subject (success, failure, or both)

subject

sequencer

return

trailer

C. DESIGN OF AUDIT GENERATION AND COLLECTION

An overview of the processes involved in the generation and collection of audit

records is presented. This is followed by a discussion of the design considerations in the

proposed workflow.

1. Overview

The following is the flow of events during the audit generation and collection

phase:

 A kernel module reaches a potential audit event generation point, usually

just before the return statement inside the relevant kernel function. It

invokes a function call to the audit subsystem to check whether the audit is

enabled. The audit subsystem replies with a predetermined return value.

 If audit is disabled, the kernel module will not perform any audit

generation operations. If audit is enabled, the kernel module will gather

the necessary event information and send it to the audit subsystem through

a function call.

 The audit subsystem will format the event information into the correct

token format, append header and trailer tokens, and write the record into

the Audit Buffer.

2. Determination of Auditable Events

The configuration vector provides the flexibility for an administrator to customize

the audit policy according to operational needs. The administrator can decide which audit

 50

events are to be generated and written to the audit logs. Thus, at the audit generation and

collection phase, there must also be a mechanism for the system to perform a check of the

audit policy to decide whether the event should be audited.

A few approaches have been considered:

1. The kernel modules are individually responsible for storing audit policy

related to their functionality, which allows the individual modules to

determine whether a potential event is auditable before invoking any function

calls to the audit subsystem. However, this means that potential audit event

decision points are spread throughout the kernel code. The lack of a common

module to perform the checking spreads the audit policy across many modules

and may result in difficulty in management of the audit policy code.

2. Kernel modules will always send all audit event information to the audit

subsystem. The audit subsystem is responsible for determining whether the

event is auditable. The advantage of this approach is the ease of management

of code as all audit configurations are maintained within the audit module.

However, there could be a potential performance issue as all event

information will be sent to the audit subsystem regardless of whether the

events should be audited or not, or whether auditing has been disabled

completely per the configuration vector.

3. The audit subsystem provides an interface to other kernel modules to allow

them to check whether a particular event should be audited before sending all

the event information. However, in this case, the audit subsystem still needs

most of the event information to decide whether the event is auditable.

Ultimately, there might not be any significant improvement over Option 2.

4. Audit subsystem provides an interface to other kernel modules to allow them

to check whether audit is enabled. This helps to reduce the amount of

unnecessary event data transferred in the event that audit is disabled.

Option 4 combined with Option 2 were selected and implemented in this research

because it provides a balanced approach by not requiring kernel modules to perform their

 51

own audit policy checking while still eliminating unnecessary function calls when audit is

disabled. Future work is needed to assess the performance impact of Option 2 before

deciding the best way to perform the audit policy checking.

3. Audit Module Interfaces

In order for the LPSK modules to communicate with the audit subsystems, a set

of application programming interfaces (API) must be provided by the audit subsystem.

Ideally, one common interface can be used by all LPSK modules to send event

information to the audit subsystem. However, that is impractical because the relevant

information differs from event to event. Such a one-size-fits-all interface would require

the interface to support all possible parameters, even though only a few would be used for

most events. A more practical approach is to provide a separate interface for each type of

event. Detailed discussions of the implementation of the interfaces are presented in

Section 4.

 Even with a separate interface for each type of event, the parameter list can still

be very long for some events. For easy management, a structure type is defined for each

type of token and the event information is encapsulated inside the token structure type.

Pointers to the structure types are passed as parameters to the audit subsystem. This helps

to keep the list of parameters small. The use of typed structures enhances

understandability and makes it easier to make amendments in the future.

 D. AUDIT MODULE INTERFACES IMPLEMENTATION

The LPSK audit module prototype was developed using the C programming

language. The implementation of the interfaces is discussed next.

1. Interfaces to Kernel Modules

Table 12 shows the structure types defined for the different types of tokens. Event

information is stored in these structure types and pointers to them are passed as

parameters to the audit subsystem interfaces.

 52

Table 12. Structure Types for Tokens

Structure Type Descriptions

typedef struct {

 unsigned char arg_id;

 unsigned int arg_val;

 unsigned char txt_len;

 unsigned char txt[256];

} audit_token_argument_t;

Structure type for argument token

 arg_id refers to the argument identifier

 arg_val refers to the argument value

 txt_len refers to the length of optional

descriptive text string

 txt refers to the optional descriptive text

typedef struct {

 unsigned char txt_len;

 unsigned char txt[256];

 unsigned int size;

 unsigned char md5hash[16];

} audit_token_cv_t;

Structure type for configuration vector token

 txt_len refers to the length of the configuration

vector descriptive text

 txt refers to the configuration vector descriptive

text

 size refers to the size of the configuration vector

 md5hash refers to the MD5 hash value of the

binary configuration vector

typedef struct {

 unsigned char major;

 unsigned char minor;

 unsigned char type;

 unsigned char part_id;

} audit_token_device_t;

Structure type for device token

 major_num refers to the major number of the

device

 minor_num refers to the minor number of the

device

 type refers to the type of device

 part-id refers to the partition ID of the device

typedef struct { Structure type for dseg token

 53

 unsigned char pl;

 unsigned char part_id;

 unsigned char path_len;

 unsigned char path[256];

} audit_token_dseg_t;

 pl refers to the privilege level of dseg

 part_id refers to the home partition ID of dseg

 path_len refers to the length of the dseg path

 path refers to the dseg path

typedef struct {

 unsigned char ec_id;

 unsigned int ec_value;

} audit_token_eventcount_t;

Structure type for eventcount token

 ec_id refers to the eventcount ID

 ec_value refers to the value of the eventcount

typedef struct {

unsigned char int_num;

} audit_token_interrupt_t;

Structure type for interrupt token

 int_num refers to the interrupt number

typedef struct {

unsigned char mac_addr[6];

} audit_token_mac_t;

Structure type for MAC token

 mac_addr refers to the MAC address

typedef struct {

 unsigned char mseg_id;

 unsigned int size;

 unsigned char pl;

 unsigned char part_id;

} audit_token_mseg_t;

Structure type for mseg token

 mseg_id refers to the mseg identifier

 size refers to the size of the mseg

 pl refers to the privilege level of mseg

 part_id refers to the home partition ID of mseg

typedef struct {

 unsigned char part_id;

} audit_token_partition_t;

Structure type for partition token

 part_id refers to the partition ID

 54

typedef struct {

unsigned char part_id;

unsigned char proc_id;

} audit_token_process_t;

Structure type for process token

 part_id refers to partition ID of the process

 proc_id refers to the process ID of the process

typedef struct {

 unsigned int ret_val;

} audit_token_return_t;

Structure type for return token

 ret_val refers to the return value of a function

call

typedef struct {

 unsigned char seq_id;

 unsigned int seq_value;

} audit_token_sequencer_t;

Structure type for sequencer token

 seq_id refers to the sequencer ID

 seq_value refers to the value of the sequencer

typedef struct {

 unsigned char sig_channel;

} audit_token_signal_t;

Structure type for signal token

 sig_channel refers to the signal channel

typedef struct {

 unsigned char part_id;

 unsigned int proc_id;

 unsigned char pl;

} audit_token_subject_t;

Structure type for subject token

 part_id refers to the partition ID of the subject

 proc_id refers to the process ID of the subject

 pl refers to the privilege level of the subject

typedef struct {

 unsigned char txt_len;

 unsigned char txt[256];

} audit_token_text_t;

Structure type for subject token

 txt_len refers to the length of the text string

 txt refers to the text string

 55

Table 13 describes a list of interfaces that are provided to allow LPSK modules to

communicate with the audit subsystem.

Table 13. Interfaces Provided to LPSK Modules

Interfaces Description

unsigned int audit_enabled(void) Returns TRUE if audit is enabled and

returns FALSE if not.

unsigned int audit_write_INI_cv(

 audit_token_cv_t *cv_tokptr);

Generate an audit record with

identifying information about the

configuration vector. The input

parameter is a pointer to a configuration

vector token type that contains

information identifying the

configuration vector.

unsigned int audit_write_INI_bind(

 audit_token_text_t *text_tokptr);

Generate an audit record for the

unsuccessful binding of security

attributes to individual partitions,

subjects, and non-subject exported

resources. The input parameter is a

pointer to a text token type that

describes the event.

unsigned int audit_write_INI_assign(

 audit_token_text_t *text_tokptr);

For some fields in the configuration

vector, a declared value is optional.

When an optional value is not given, the

LPSK platform is required to use a

default value for the duration of an

operational mode. Generate an audit

 56

record when such assignments of default

values during initialization occurred.

The input parameter is a pointer to a text

token type that describes the event.

unsigned int audit_write_INI_invalid(

 audit_token_text_t *text_tokptr);

Generate an audit record for the

detection during LPSK initialization of

an invalid value or set of values in a

binary configuration vector. The input

parameter is a pointer to a text token

type that describes the event.

unsigned int audit_write_INI_complete(void);

Generate an audit record for the

successful completion of LPSK

initialization

unsigned int audit_write_SYS_auditstart(

 unsigned short evt_mod);

Generate an audit record for the

successful start-up and shutdown of the

LPSK audit mechanism by the LPSK

Initializer. An input argument of 0

indicates a start-up, and 1 indicates a

shutdown

unsigned int audit_write_SYS_actiontest(

 audit_token_text_t *text_tokptr);

Generate an audit record for the actions

taken because of a failure of an LPSK

self-test. The input parameter is a

pointer to the text token type that

describes the actions taken.

unsigned int audit_write_SYS_configchange(Generate an audit record for all requests

 57

 audit_token_subject_t *sub_tokptr

 audit_token_argument_t *arg_tok,

 audit_token_return_t *return_tok);

for a configuration change. The input

parameters are pointers to a subject

token type and an argument token type

that describes the argument provided for

the configuration change and a return

token type that indicates the return

value.

unsigned int audit_write_SYS_lpskstart(void);

Generate an audit record for the success

of each startup of the LPSK.

unsigned int audit_write_SYS_failtest(

 audit_token_text_t *text_tokptr);

Generate an audit record for the failure

of an LPSK self test. The input

parameter is a pointer to the text token

type that describes the event.

unsigned int audit_write_SYS_loss(

 audit_token_text_t *text_tokptr);

Generate an audit record for any

detected loss of secure state. The input

parameter is a pointer to the text token

type that describes the event.

unsigned int audit_write_SYS_recover(

 audit_token_text_t *text_tokptr);

Generate an audit record for an action

taken to attempt to recover the LPSK to

a secure state. The input parameter is a

pointer to the text token type that

describes the action taken.

unsigned int audit_write_SYS_failsecure(

 audit_token_text_t *text_tokptr);

Generate an audit record for the inability

of the LPSK to return to a secure state

 58

 after failure of a security function. The

input parameter is a pointer to the text

token type that describes the event.

unsigned int audit_write_SYS_time(

 audit_token_subject_t *sub_tokptr,

 audit_token_argument_t *arg_tokptr,

 audit_token_return_t *return_tokptr);

Generate an audit record for changes to

the LPSK time source. The input

parameters are pointers to a subject

token type, an argument token type that

describes the argument provided for the

change to the time source, and a return

token type that indicates the return

value.

unsigned int audit_write_SYS_sak(

 audit_token_partition_t *part_tokptr);

Generate an audit record for the

detection of a SAK invocation. The

input parameter is a pointer to the

partition token type that describes the

partition.

unsigned int audit_write_SYS_shut(

 unsigned short evt_mod);

Generate an audit record for the

shutdown, powerdown or halt of a

platform. An input argument of 0

indicates a shutdown, 1 indicates a

powerdown and 2 indicates a halt.

unsigned int audit_write_DEV_read(

 audit_token_subject_t *sub_tokptr,

 audit_token_device_t *device_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a read

operation of a particular device is

requested. The input parameters are

pointers to a subject token type, a device

token type and a return token type.

 59

unsigned int audit_write_DEV_write(

 audit_token_subject_t *sub_tokptr,

 audit_token_device_t *device_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a write

operation of a particular device is

requested. The input parameters are

pointers to a subject token type, a device

token type and a return token type.

unsigned int audit_writeDEV_metaread(

 audit_token_subject_t *sub_tokptr,

 audit_token_device_t *device_tok,

 audit_token_arg_t *arg_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a read

meta-data operation for a particular

device is requested. The input

parameters are pointers to a subject

token type, a device token type, an

argument token type and a return token

type.

unsigned int audit_write_DEV_metawrite(

 audit_token_subject_t *sub_tokptr,

 audit_token_device_t *device_tok,

 audit_token_arg_t *arg_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a write

meta-data operation for a particular

device is requested. The input

parameters are pointers to a subject

token type, a device token type, an

argument token type and a return token

type.

unsigned int audit_write_DEV_mac(

 audit_token_partition_t *part_tokptr,

 audit_token_mac_t *mac_tok);

Generate an audit record when duplicate

MAC addresses are detected. The input

parameters are pointers to a partition

token type and a mac token type that

contains the MAC address.

 60

unsigned int audit_write_DEV_subread(

 audit_token_subject_t *sub_tokptr,

 audit_token_device_t *device_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a device

read is requested by a particular subject.

The input parameters are pointers to a

subject token type, a device token type

and a return token type.

unsigned int audit_write_DEV_subwrite(

 audit_token_subject_t *sub_tokptr,

 audit_token_device_t device_tok,

 audit_token_return_t return_tok);

Generate an audit record when a device

write is requested by a particular subject.

The input parameters are pointers to a

subject token type, a device token type

and a return token type.

unsigned int audit_writeDEV_subconf(

 audit_token_subject_t *sub_tokptr,

 audit_token_device_t device_tok,

 audit_token_arg_t arg_tok,

 audit_token_return_t return_tok);

Generate an audit record when a device

configuration is requested by a particular

subject. The input parameters are

pointers to a subject token type, a device

token type, an argument token type and

a return token type.

unsigned int audit_write_PRO_start(

 audit_token_process_t *proc_tokptr);

Generate an audit record for the success

or failure of starting a process. The

input parameter is a pointer to a process

token type.

unsigned int audit_write_PRO_terminate(

audit_token_process_t *proc_tokptr);

Generate an audit record for the

termination of a process. The input

parameter is a pointer to a process token

type.

unsigned int audit_write_PRO_sigsent(Generate an audit record when a signal

 61

 audit_token_subject_t *subject_tok,

 audit_token_signal_t *signal_tok,

 audit_token_subject_t *subject_tok,

 audit_token_return_t *return_tok);

is sent by a particular subject. The input

parameters are pointers to a sender

subject token type, a signal token type, a

recipient subject token type and a return

token type.

unsigned int audit_write_PRO_sigrecv(

 audit_token_subject_t *subject_tok,

 audit_token_signal_t *signal_tok,

 audit_token_subject_t *subject_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a signal

is received by a particular subject. The

input parameters are pointers to a

recipient subject token type, a signal

token type, a sender subject token type

and a return token type.

unsigned int audit_write_PRO_interrupt(

 audit_token_subject_t *subject_tok,

 audit_token_interrupt_t *interrupt_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a

software interrupt is invoked by a

particular subject. The input parameters

are pointers to a subject token type, an

interrupt token type, and a return token

type.

unsigned int audit_write_MEM_dsegexceed(

 audit_token_subject_t *subject_tok,

 audit_token_dseg_t *dseg_tok);

Generate an audit record when an

attempt to swapin a dseg exceeded

memory quota. The input parameters are

pointers to a subject token type, and a

dseg token type.

unsigned int audit_write_MEM_msegexceed(

 audit_token_subject_t *subject_tok,

 audit_token_mseg_t *mseg_tok);

Generate an audit record when an

attempt to create a mseg exceeds the

memory quota. The input parameters are

 62

 pointers to a subject token type, and a

mseg token type.

unsigned int audit_write_MEM_swapin(

 audit_token_subject_t *subject_tok,

 audit_token_dseg_t *dseg_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a

particular segment is swapped in. The

input parameters are pointers to a

subject token type, a dseg token type

and a return token type.

unsigned int audit_write_MEM_flush(

 audit_token_subject_t *subject_tok,

 audit_token_dseg_t *dseg_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a

particular segment is flushed. The input

parameters are pointers to a subject

token type, a dseg token type and a

return token type.

unsigned int audit_write_MEM_swapout(

 audit_token_subject_t *subject_tok,

 audit_token_dseg_t *dseg_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a

particular segment is swapped out. The

input parameters are pointers to a

subject token type, a dseg token type

and a return token type.

unsigned int audit_write_MEM_msegcreate(

 audit_token_subject_t *subject_tok,

 audit_token_mseg_t *mseg_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a mseg is

created. The input parameters are

pointers to a subject token type, a mseg

token type and a return token type.

unsigned int audit_write_SYN_procawait(

 audit_token_subject_t *subject_tok,

 audit_token_eventcount_t *evtcnt_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a process

awakes from an await on an eventcount.

The input parameters are pointers to a

subject token type, an eventcount token

 63

 type and a return token type.

unsigned int audit_write_SYN_ecadvance(

 audit_token_subject_t *subject_tok,

 audit_token_eventcount_t *evtcnt_tok,

 audit_token_return_t *return_tok);

Generate an audit record when an

advance of an eventcount is requested.

The input parameters are pointers to a

subject token type, an eventcount token

type and a return token type.

unsigned int audit_write_SYN_ecread(

 audit_token_subject_t *subject_tok,

 audit_token_eventcount_t *evtcnt_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a read of

an eventcount is requested. The input

parameters are pointers to a subject

token type, an eventcount token type and

a return token type.

unsigned int audit_write_SYN_ecawake(

 audit_token_subject_t *subject_tok,

 audit_token_eventcount_t *evtcnt_tok,

 audit_token_return_t *return_tok);

Generate an audit record when an awake

of an eventcount is requested. The input

parameters are pointers to a subject

token type, an eventcount token type and

a return token type.

unsigned int audit_write_SYN_ecwakeup(

 audit_token_subject_t *subject_tok,

 audit_token_eventcount_t *evtcnt_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a wakeup

on an eventcount is requested. The input

parameters are pointers to a subject

token type, an eventcount token type and

a return token type.

unsigned int audit_write_SYN_seqticket(

 audit_token_subject_t *subject_tok,

 audit_token_sequencer_t *seq_tok,

 audit_token_return_t *return_tok);

Generate an audit record when the ticket

of a sequencer is requested by a

particular subject. The input parameters

are pointers to a subject token type, a

 64

 sequencer token type and a return token

type.

unsigned int audit_write_SYN_subecread(

 audit_token_subject_t *subject_tok,

 audit_token_eventcount_t *evtcnt_tok,

 audit_token_return_t *return_tok);

Generate an audit record when a read of

an eventcount is requested by a

particular subject. The input parameters

are pointers to a subject token type, an

eventcount token type and a return token

type.

unsigned int audit_write_SYN_subecadvance(

 audit_token_subject_t *subject_tok,

 audit_token_eventcount_t *evtcnt_tok,

 audit_token_return_t *return_tok);

Generate an audit record when an

advance of an eventcount is requested

by a particular subject. The input

parameters are pointers to a subject

token type, an eventcount token type and

a return token type.

unsigned int audit_write_SYN_subecawait(

 audit_token_subject_t *subject_tok,

 audit_token_eventcount_t *evtcnt_tok,

 audit_token_return_t *return_tok);

Generate an audit record when an await

on an eventcount is requested by a

particular subject. The input parameters

are pointers to a subject token type, an

eventcount token type and a return token

type.

unsigned int audit_write_SYN_subseqticket(

 audit_token_subject_t *subject_tok,

 audit_token_sequencer_t *seq_tok,

 audit_token_return_t *return_tok);

Generate an audit record when the ticket

of a sequencer is requested by a

particular subject. The input parameters

are pointers to a subject token type, a

sequencer token type and a return token

type.

 65

A selection process was performed on the 46 auditable events to identify those

that are potentially implementable in the current LPSK prototype and those events that

are likely to occur during the execution of each process. Ten high priority interfaces were

selected and fully implemented in the LPSK audit subsystem prototype. They include the

following:

 audit_write_INI_cv

 audit_write_INI_complete

 audit_write_SYS_auditstart

 audit_write_SYS_lpskstart

 audit_write_SYS_sak

 audit_write_MEM_swapin

 audit_write_MEM_msegcreate

 audit_write_SYN_ecawait

 audit_write_SYN_procawake

 audit_write_SYM_seqticket

2. Exported LPSK Audit Interfaces

Table 14 describes the interfaces that are provided to allow a non-kernel audit

retrieval application to communicate with the audit subsystem.

Table 14. Exported LPSK Audit Interfaces

Interfaces Description
unsigned int audit_read_next(

 unsigned short max_len,

 unsigned char *buffer,

 unsigned short *num_requested,

 unsigned short *num_read);

Reads the oldest records from the audit

buffer and places them into the output

parameter buffer (The number of records

requested is indicated via num_requested,

and the size of the buffer is indicated in

 66

max_len). Returns the number of records

placed inside buffer through num_read. If

there are fewer than num_requested records

in the Audit Buffer, then the available

records are put into the buffer, and no error

is returned. If there are num_requested

records, but they would not all fit into

buffer, then those that will fit will be put

into buffer, and no error is returned. If there

are no audit records to be obtained, then

num_read is set to to indicate that the

buffer is empty.

unsigned int audit_read_buffer_size(

 unsigned int *buffer_size);

Reads the audit buffer size and places it

into the output parameter buffer_size.

unsigned int audit_read_num_rec(

 unsigned int *num_rec);

Returns the number of records in the audit

buffer and places it into the output

parameter num_rec.

Unsigned int audit_read_num_generated(

unsigned int *num_generated)

Returns the total number of records

generated during the current operational

mode in the output parameter

num_generated. This number will wrap-

around to zero if more than 232 audit

records are generated in an operational

mode.

unsigned int audit_read_num_overwritten(

 unsigned int *num_overwritten);

Reads the number of records overwritten

and places it into the output parameter

 67

num_overwritten. This represents the

number of audit records that have been

overwritten during the current operational

mode because the buffer was full when a

new record was generated. This number

will wrap-around to zero if more than 232

audit records are overwritten in an

operational mode.

E. AUDIT BUFFER IMPLEMENTATION

Audit records collected by the Audit Collector are first stored in an Audit Buffer,

then they may be read by an authorized Audit Retrieval subject, which may save them on

a secondary storage device. Because the size of the Audit Buffer is limited, records that

have been read by the Audit Retrieval subject need to be deleted from the Audit Buffer to

free up space for new records.

Because records will be deleted as they are read, and new records will be added as

space allows, it was determined that the Audit Buffer should be implemented using the

abstract data type of a circular buffer. A circular buffer is a First-In-First-Out (FIFO)

queue which means that the oldest record will be read first. The size of the Audit Buffer

is specified in the configuration vector and a memory segment of that size is allocated to

the Audit Buffer during the audit subsystem initialization phase.

The circular buffer is implemented as an array of bytes inside the memory

segment. Two indices are used to keep track of where the oldest record starts, and where

the newest record ends: first and last. These two variables mark the start and end of the

queue respectively. A new audit record is added to the end of the queue, at the location

referenced by the last index, which is then incremented to point to the end of the new

record. When the last index reaches the end of the allocated memory segment, it will

 68

“wrap around” and move to the beginning of the memory segment. An audit record is

read from the start of the queue marked by the first index, which is then modified to point

to the next record in the queue.

When the audit retrieval application attempts to read an empty buffer, i.e. when

first and last indices point to the same location, the audit subsystem will return zero bytes

of data read to the calling application to indicate that audit buffer is empty. When the

LPSK modules attempt to write to a full buffer, i.e. when incrementing last index will

cause it to point to the same location as first index, the audit subsystem will either

overwrite the oldest record, halt or shutdown. The behavior can be configured in the

configuration vector.

 When the audit subsystem overwrites an audit record, it will first increment the

first index by the amount equal to the length of the oldest record and thus makes it point

to the second oldest record. In this way, it effectively discards the oldest record and

allows a new record to overwrite the space used by the oldest record. It is possible that

the newest record is larger than the oldest record, which may cause more than one record

to be overwritten.

Two more variables, record_num and overwritten_num, are used to keep track of

the number of records in the buffer and the number of records that have been overwritten

respectively. They are updated whenever records are read, written or overwritten. The

audit retrieval application can query the audit subsystem for the values of these variables

through kernel APIs. Each variable is stored using a 32-bit unsigned integer, which will

roll over to zero when the maximum value is reached. It is the responsibility of the audit

retrieval application to take the necessary actions to deal with rollover.

 69

V. TESTING

This chapter consists of two parts: The first part describes the developmental

testing of the individual audit subsystem interfaces. The second part describes the

acceptance testing of the entire audit subsystem to meet the requirements stipulated in

Chapter III.

A. DEVELOPMENTAL TESTING

The purpose of the developmental testing is to ensure that each interface of the

LPSK audit subsystem behaves in the way intended by design.

1. Testing of Interfaces to Kernel Modules

Tables 15 through 25 show the test suite for the APIs provided by the audit

subsystem to other LPSK modules to allow them to write audit records to the Audit

Buffer. Eleven of the internal APIs are implemented for this research. The functions were

tested independently of each other after the initialization of the audit subsystem. Test

code was inserted into the LPSK modules to invoke the functions using different input

arguments and sometimes under different conditions. Debugging messages were

generated to provide a mean of verifying the outcome.

The Test ID column in each of the tables provides a unique identifier for each test

case. The test cases can be classified into two different types: functional and exception. A

functional test type describes a normal use case where the action is designed to verify the

successful invocation of a function call to accomplish certain tasks. An exception test

type describes a test case were the action is designed to cause errors within specific

components of the audit subsystem. The purpose of these tests is to verify that the audit

subsystem is able to handle exceptions and exhibits expected behavior under such

circumstances. The Action column gives a summary of the actions performed during the

test, and preconditions for the test cases are described where applicable. The Expected

Result column describes the expected behavior of the component for each test case.

 70

Table 15. Function Test for audit_enabled

audit_enabled

Test

ID

Test Type Action Expected Result Pass /

Fail

F1-1 Functional Call function when

audit is not enabled

FALSE is returned Pass

F1-2 Exception Call function when

audit is enabled

TRUE is returned Pass

Table 16. Function Test for audit_write_INI_cv

audit_write_INI_cv

Test

ID

Test Type Action Expected Result Pass /

Fail

F2-1 Functional Call function when audit

is enabled. Provide valid

input arguments.

AUD_NO_ERR is returned.

Record is successfully written to

the Audit Buffer.

Pass

F2-2 Exception Call function when audit

is disabled

AUD_ERR_DISABLED error

code is returned

Pass

F2-3 Exception Provide null pointer as

arguments

AUD_ERR_INVALID_PARAM

error code is returned

Pass

F2-4 Exception Set the length of

descriptive text to 0

AUD_ERR_INVALID_PARAM

error code is returned

Pass

 71

Table 17. Function Test for audit_write_INI_complete

audit_write_INI_complete

Test

ID

Test Type Action Expected Result Pass /

Fail

F3-1 Functional Call function when audit

is enabled.

AUD_NO_ERR is returned. Record

is successfully written to the Audit

Buffer.

Pass

F3-2 Exception Call function when audit

is disabled.

AUD_ERR_DISABLED error code

is returned

Pass

Table 18. Function Test for audit_write_SYS_auditstart

audit_write_SYS_auditstart

Test

ID

Test Type Action Expected Result Pass /

Fail

F4-1 Functional Call function when audit is

enabled. Event modifier is

set to

AUD_MOD_START

AUD_NO_ERR is returned. Record

is successfully written to the Audit

Buffer.

Pass

F4-2 Functional Call function when audit is

enabled. Event modifier is

set to

AUD_MOD_SHUTDOW

N

AUD_NO_ERR is returned. Record

is successfully written to the Audit

Buffer.

Pass

F4-3 Exception Call function when audit is

enabled. Provide invalid

event modifier.

AUD_ERR_INVALID_PARAM

error code is returned

Pass

F4-4 Exception Call function when audit is

disabled.

AUD_ERR_DISABLED error code

is returned

Pass

 72

Table 19. Function Test for audit_write_SYS_lpskstart

audit_write_SYS_lpskstart

Test

ID

Test Type Action Expected Result Pass /

Fail

F5-1 Functional Call function when audit

is enabled.

AUD_NO_ERR is returned.

Record is successfully written to

the Audit Buffer.

Pass

F5-2 Exception Call function when audit

is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

Table 20. Function Test for audit_write_SYS_sak

audit_write_SYS_sak

Test

ID

Test Type Action Expected Result Pass /

Fail

F6-1 Functional Call function when audit

is enabled. Provide valid

input arguments.

AUD_NO_ERR is returned.

Record is successfully written to

the Audit Buffer.

Pass

F6-2 Exception Call function when audit

is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F6-3 Exception Provide null pointer as

arguments

AUD_ERR_INVALID_PARAM

error code is returned

Pass

F6-4 Exception Provide an out of bound

partition ID as argument

AUD_ERR_INVALID_PARAM

error code is returned

Pass

 73

Table 21. Function Test for audit_write_MEM_swapin

audit_write_MEM_swapin

Test

ID

Test Type Action Expected Result Pass /

Fail

F7-1 Functional Call function when audit

is enabled. Provide valid

input arguments.

AUD_NO_ERR is returned.

Record is successfully written to

the Audit Buffer.

Pass

F7-2 Exception Call function when audit

is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F7-3 Exception Provide null pointer as

arguments

AUD_ERR_INVALID_PARAM

error code is returned

Pass

F7-4 Exception Set dseg path length

input argument to 0

AUD_ERR_INVALID_PARAM

error code is returned

Pass

Table 22. Function Test for audit_write_MEM_msegcreate

audit_write_MEM_msegcreate

Test

ID

Test Type Action Expected Result Pass /

Fail

F8-1 Functional Call function when audit

is enabled. Provide valid

input arguments.

AUD_NO_ERR is returned.

Record is successfully written to

the Audit Buffer.

Pass

F8-2 Exception Call function when audit

is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F8-3 Exception Provide null pointer as

arguments

AUD_ERR_INVALID_PARAM

error code is returned

Pass

F8-4 Exception Provide an out of bound

mseg ID as argument

AUD_ERR_INVALID_PARAM

error code is returned

Pass

 74

Table 23. Function Test for audit_write_SYN_ecawake

audit_write_SYN_ecawake

Test

ID

Test Type Action Expected Result Pass /

Fail

F9-1 Functional Call function when audit

is enabled. Provide valid

input arguments.

AUD_NO_ERR is returned.

Record is successfully written to

the Audit Buffer.

Pass

F9-2 Exception Call function when audit

is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F9-3 Exception Provide null pointer as

arguments

AUD_ERR_INVALID_PARAM

error code is returned

Pass

F9-4 Exception Provide an out of bound

eventcount ID as

argument

AUD_ERR_INVALID_PARAM

error code is returned

Pass

 75

Table 24. Function Test for audit_write_SYN_procawait

audit_write_SYN_procawait

Test

ID

Test Type Action Expected Result Pass /

Fail

F10-1 Functional Call function when

audit is enabled.

Provide valid input

arguments.

AUD_NO_ERR is returned.

Record is successfully written to

the Audit Buffer.

Pass

F10-2 Exception Call function when

audit is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F10-3 Exception Provide null pointer as

arguments

AUD_ERR_INVALID_PARAM

error code is returned

Pass

F10-4 Exception Provide an out of bound

eventcount ID as

argument

AUD_ERR_INVALID_PARAM

error code is returned

 76

Table 25. Function Test for audit_write_SYN_seqticket

audit_write_SYN_seqticket

Test

ID

Test Type Action Expected Result Pass /

Fail

F11-1 Functional Call function when

audit is enabled.

Provide valid input

arguments.

AUD_NO_ERR is returned.

Record is successfully written to

the Audit Buffer.

Pass

F11-2 Exception Call function when

audit is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F11-3 Exception Provide null pointer as

arguments

AUD_ERR_INVALID_PARAM

error code is returned

Pass

F11-4 Exception Provide an out of bound

sequencer ID as

argument

AUD_ERR_INVALID_PARAM

error code is returned

Pass

2. Testing of Exported Interfaces to Audit Retrieval

Tables 26 through 30 describe the testing of the functions exported by the audit

subsystem to authorized subjects. A test application residing in PL3 was created to

facilitate the testing. The API calls were invoked from the test application and the results

were displayed on the screen for verification.

 77

Table 26. Function Test for audit_read_next

audit_read_next

Test

ID

Test Type Action Expected Result Pass /

Fail

F12-1 Functional Call function when

audit is enabled.

Request to read 1

record from the Audit

Buffer.

AUD_NO_ERR is returned.

Record is successfully read from

the Audit Buffer. Number of

records read is correctly returned

via the output parameter.

Pass

F12-2 Functional Call function when

audit is enabled.

Request to read

multiple records from

the Audit Buffer.

AUD_NO_ERR is returned.

Records are successfully read

from the Audit Buffer. Number

of records read is correctly

returned via the output

parameter.

Pass

F12-3 Exception Call function when

audit is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F12-4 Exception Provide null pointer as

argument

AUD_ERR_INVALID_PARAM

error code is returned

Pass

F12-5 Exception Provide a buffer size

that is smaller than the

record length.

AUD_ERR_SIZE_EXCEED

error code is returned

Pass

F12-6 Exception Request to read 1

record when the Audit

Buffer is empty.

A value of 0 is returned for

number of records read.

AUD_ERR_BUF_EMPTY error

code is also returned.

Pass

F12-7 Functional Request to read more All the records in the Audit Pass

 78

records than is in the

Audit Buffer. (E.g.

Request to read 3

records when there is

only 2 record in the

Audit Buffer)

Buffer are read. Number of

records read is correctly returned

via the output parameter.

F12-8 Functional Request to read more

than 1 record but the

size of the buffer is not

enough to receive all

the records requested.

Records that will fit into the

buffer are read. Number of

records read is correctly returned

via the output parameter.

Table 27. Function Test for audit_read_buffer_size

audit_read_buffer_size

Test

ID

Test Type Action Expected Result Pass /

Fail

F13-

1

Functional Call function when

audit is enabled. Provide

valid argument to store

size of Audit Buffer.

AUD_NO_ERR is returned. Size

of Audit Buffer is correctly

returned via the output

parameter.

Pass

F13-

2

Exception Call function when

audit is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F13-

3

Exception Provide null pointer as

argument

AUD_ERR_INVALID_PARAM

error code is returned

Pass

 79

Table 28. Function Test for audit_read_num_rec

audit_read_num_rec

Test

ID

Test Type Action Expected Result Pass /

Fail

F14-1 Functional Call function when

audit is enabled.

Provide valid argument

to store the number of

records in the Audit

Buffer.

AUD_NO_ERR is returned.

Number of records in the Audit

Buffer is correctly returned via

the output parameter.

Pass

F14-2 Exception Call function when

audit is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F14-3 Exception Provide null pointer as

argument

AUD_ERR_INVALID_PARAM

error code is returned

Pass

 80

Table 29. Function Test for audit_read_num_generated

audit_read_num_generated

Test

ID

Test Type Action Expected Result Pass /

Fail

F15-1 Functional Call function when

audit is enabled.

Provide valid argument

to store total number of

records generated.

AUD_NO_ERR is returned.

Total number of records

generated is correctly returned

via the output parameter.

Pass

F15-2 Exception Call function when

audit is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F15-3 Exception Provide null pointer as

argument

AUD_ERR_INVALID_PARAM

error code is returned

Pass

 81

Table 30. Function Test for audit_read_num_overwritten

audit_read_num_overwritten

Test

ID

Test Type Action Expected Result Pass /

Fail

F16-1 Functional Call function when

audit is enabled.

Provide valid argument

to store total number of

records already

overwritten.

AUD_NO_ERR is returned.

Total number of records

overwritten is correctly returned

via the output parameter.

Pass

F16-2 Exception Call function when

audit is disabled.

AUD_ERR_DISABLED error

code is returned

Pass

F16-3 Exception Provide null pointer as

argument

AUD_ERR_INVALID_PARAM

error code is returned

Pass

3. Testing of Audit Buffer

Table 31 describes additional testing performed on the Audit Buffer. The correct

implementation of the Audit Buffer provides assurance that audit records will not be

accidentally modified or deleted during read or write operations.

 82

Table 31. Test for Audit Buffer

Test

ID

Test Type Action Expected Result Pass /

Fail

AB-1 Functional Add and retrieve a

record to/from the

Audit Buffer one at a

time. Iterate this

process until the read /

write process “wraps

around” the Audit

Buffer a few times.

Audit records successfully

written and read from the Audit

buffer.

Pass

AB-2 Exception Add an audit record to

the Audit Buffer when

it is full, such that the

newest record is of a

different type than the

record to be

overwritten. (Audit

Buffer is configured to

overwrite old records.)

The oldest audit record is

overwritten. The number of

records overwritten and the

number of records in the Audit

Buffer is updated. Retrieve all

the audit records and verify that

that last record returned is the

one that overwrote the oldest

record.

Pass

The developmental testing proved to be very useful as a number of bugs were

detected. Bugs related to the Audit Buffer were especially difficult to detect because they

occur intermittently and are difficult to replicate. To make matters worse, the debugging

process is very time consuming as every time a change is made, the files must be

transferred from the development virtual machine to the test virtual machine and the test

virtual machine must then be rebooted.

 83

Nevertheless, Developmental testing has helped to provide a systematic way to

isolate problems. All the bugs that were found were successfully corrected. The test was

re-run successfully and no additional problem was found.

B. ACCEPTANCE TESTING

The purpose of the acceptance testing is to ensure the proper functioning of the

audit subsystem to support the audit requirements of LPSK. The LPSK kernel source

code was modified to generate various audit events. It was compiled together with the

audit subsystem modules. The configuration vector was configured to create eventcounts,

sequencers, msegs and dsegs for the purpose of audit record generation testing. After

successful initialization, the LPSK modules start to invoke function calls to the audit

subsystems to record the audit events.

A test application was also created to read the audit records from the Audit

Buffer. The test application provides the user with a menu interface to select different

types of requests to the audit subsystem. A user can use the menu to retrieve audit records

from the Audit Buffer. Because the LPSK does not support a secondary storage device

driver in the current prototype implementation, the test application creates another buffer

to simulate a secondary storage device. Retrieved audit records are stored in this buffer.

The test application can also read and display the audit records on the console. This

allows manual inspection of the audit records to verify that audit event information is

correctly captured in the record.

Table 32 describes the acceptance tests performed when audit is enabled. The

actions are designed to systematically trigger the audit events implemented in this study.

 84

Table 32. Acceptance Tests when Audit is Enabled

Test

ID

Action Expected Result Pass /

Fail

A-1 Boot up LPSK. Start the audit

test application. Request for

the number of audit records

in the Audit Buffer.

Audit subsystem correctly returns the

number of records generated

Pass

A-2 After doing A-1, request to

read an audit record from the

Audit Buffer, followed by a

request for the number of

audit records. Repeat until

Audit Buffer is empty.

Audit records are successfully read

from the Audit Buffer. The number of

audit records in the Audit Buffer is

decremented by 1 after each retrieval.

Pass

A-3 Reboot the LPSK and go to

the audit testing partition.

Display and verify the audit

records.

Audit records for the following events

are successfully returned.

 start of LPSK audit subsystem

 identifying information of the

configuration vector

 Swap in of a dseg defined in the

configuration vector

 Creation of a mseg defined in

the configuration vector

 Successful completion of LPSK

initialization

 Successful startup of LPSK

runtime.

Pass

 85

Correct timestamp is attached to each

record. CRC32 checksum is verified for

each record.

A-4 Verify that the audit buffer is

empty, then invoke a SAK

and then return to the audit

testing partition. Read the

audit record.

Audit record is returned for the

detection of SAK

Pass

A-5 Verify that the audit buffer is

empty, then request the ticket

of a sequencer. (Test

application has read and write

permission to the sequencer)

Audit record (for success) is returned

for this event.

Pass

A-6 Verify that the audit buffer is

empty, then request an await

on an eventcount. (Test

application has read and write

permission to the eventcount)

Audit record (for success) is returned

for this event.

Pass

A-7 Verify that the audit buffer is

empty, then advance the

eventcount mentioned in A-6.

(Test application has read and

write permission to the

eventcount)

Audit record (for success) is returned

when the process wake from an await on

eventcount.

Pass

A-8 Verify that the audit buffer is

empty, then request the ticket

of a sequencer. (Test

application does not have

Audit record (for failure) is returned for

this event.

Pass

 86

read and write permission to

the sequencer)

A-9 Verify that the audit buffer is

empty, then request an await

on an eventcount. (Test

application does not have

read and write permission to

the eventcount)

Audit record (for failure) is returned for

this event.

Pass

A-10 Keep invoking the SAK to

generate enough records to

fill up the Audit Buffer.

Audit records are generated. Old records

are overwritten by new ones when the

Audit Buffer is full. Number of audit

records being overwritten is updated.

Pass

Table 33 describes the acceptance tests performed when audit is disabled. The

purpose of this test is to ensure that LPSK continues to function properly when audit is

disabled.

Table 33. Acceptance Tests when Audit is Disabled

Test

ID

Action Expected Result Pass /

Fail

B-1 Boot up LPSK. Start the

audit test application.

Request for the number of

audit records in the buffer.

No audit record generated. Pass

B-2 Request to read an audit

record from the Audit Buffer.

No audit record in the Audit Buffer. Pass

B-3 Perform the tasks described

in A-4 to A-10 in Table 31

No audit record is returned. Pass

 87

The acceptance tests were successful. No bugs were found during acceptance

testing because the functional and exception tests appear to have identified all the bugs.

Detailed test procedures and results are provided in the Appendix.

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

VI. CONCLUSION

This study explored the best way to design and implement an audit subsystem for

the LPSK. The first step was to gather the audit requirements that were sprinkled

throughout the LPSK functional specifications and SKPP.

From these requirements, a list of auditable events was created. It was determined

that the information required to describe and record each event differs a lot. Some events

require more attributes to describe them than others. This means that the size of the audit

records could vary. Due to the fact that managing varying length records adds

considerable amount of complexity to the implementation, the idea of allocating a

maximum fixed size for each record was initially explored. In general, such an approach

would result in inefficient use of limited memory space. A varying length token based

record format was found to be the better solution for LPSK audit records. The highly

structured nature of the tokens helps to relieve the difficulties in managing varying length

records.

Audit interfaces were defined to allow LPSK modules to send audit information

to the audit subsystem and to allow an authorized application to retrieve audit records.

The design is based on the assumption that only one authorized application retrieves

records from the audit subsystem. No use case has been identified so far that would

involve having multiple applications concurrently reading records from the Audit Buffer.

After the audit interfaces were defined, an LPSK audit module was designed to

manage the audit buffers and other audit metadata. Because of the specified nature of the

audit subsystem, it was determined that the best abstract data structure for managing the

records was a circular buffer, which would allow old records to be read from one side of

the buffer, and allow new records to be added to the other side of the buffer.

A prototype audit subsystem was developed to test out the design. Development

and testing was time consuming due to the fact that every run of the code involves

transferring compiled binaries from the development virtual machine to the testing virtual

machine. When the LPSK is initializing, there is not much feedback on the status of the

 90

audit subsystem to know whether things are going right. A debugger, such as the

VMware Vprobes [19], would have been helpful in troubleshooting the code at the kernel

level. However, Vprobes requires developers to write scripts to collect the data they want

to investigate. This creates a learning curve for developers who are unfamiliar with

Vprobes scripts. Furthermore, the lack of a LPSK disk device driver means that currently

it is not possible to write debug logs to a secondary storage device. The workaround was

to strategically place function calls to print debug messages to the screen and pause the

initialization to be able to see the messages before they are overwritten by other

messages.

Testing was conducted and problems were found due to incorrect implementation

of the operations to read and write records to the audit buffer. The bugs were corrected

and subsequent testing was completed successfully.

A. RELATED WORK

This section introduces related work on separation kernel audit subsystems. Green

Hills’ INTEGRITY-178 Operating Systems [20] was the first separation kernel to be

certified compliant with the SKPP. Its audit subsystem bears close resemblance to the one

implemented in this study due to the fact that both INTEGRITY-178 and LPSK draw

their audit requirements from the SKPP.

The INTEGRITY-178’s audit event log is stored using a circular buffer in kernel

memory. Once read, the audit record is removed from the circular buffer. The oldest

record will be overwritten when the buffer fills up. This implementation is very similar to

the LPSK’s implementation. The main difference is that the INTEGRITY-178 abstracts

the circular buffer as an I/O device object. Accesses to the I/O devices are configured

using static configuration files. No information regarding the format of the audit records

for INTEGRITY-178 is available.

The LynxSecure Embedded Hypervisor by LynuxWorks [21] and VxWorks by

Wind Rivers Systems [22] are another two separation kernels undergoing certification to

be compliant with SKPP. However, there was no information available about their

implementations of the audit subsystems.

 91

B. FUTURE WORK

This section presents some recommendations for future work.

1. Abstraction of Audit Subsystem as a Device

Before finding the related work from Green Hills, it was already suggested that

future work could look into the possibility of abstracting the audit interface like a device.

The interface to the audit subsystem is very similar to a device interface, especially to an

asynchronous read-only device like a keyboard. Both are using internal buffers to store

data while exporting a set of kernel APIs to allow external applications to obtain the

buffered information. The following are the potential benefits to this abstraction:

 Access control to the audit API can be controlled in the same way the devices

are controlled.

 The audit metadata can be made available through the device CONTROL

interface.

 The number of kernel APIs is reduced, thus reducing kernel complexity.

2. Audit Review

This study has focused on the design of an audit subsystem to generate and collect

audit events within the LPSK, and to provide an interface to allow authorized subjects to

extract audit records from the kernel and store them on secondary storage for future

review. While a token-based audit record format is suitable within the LPSK, it may not

be the ideal format for human review. The overall audit system would not be complete

without providing an effective way for the administrator to review the audit records. A

detailed study needs to be done to look at the best way to store, process and present the

records to the administrator. This would also include exploring how records will be put

into, and retrieved from, a secondary storage device.

3. Performance Study

In this study, it was decided that as long as audit is enabled, the LPSK modules

will always send event information to the audit subsystem when a potential auditable

 92

event has occurred. The audit subsystem checks the audit policy to decide whether the

event should be recorded. While this approach is simple, a potential performance penalty

may be incurred if a large portion of the events sent to the audit subsystem do not need to

be audited. A study to assess the performance impact of such an approach is needed in

order to determine the best way to perform the audit policy checking.

4. Implementation of Unfinished Work

Due to the fact that the LPSK prototype is currently incomplete, several of the

audit subsystem features were not implemented in this work. The following is a list of

work that needs to be done when the prototype is more fully developed:

 Initialize the audit subsystem based on the configuration read from the

configuration vector. This includes behavior of the circular buffer when it is

full and advanced filtering rules for selective auditing of events based on

attributes, which include subject identity, resource identity, event type, and

success or failure of particular events.

 Modify the header token to accept timestamps with finer granularity. The

current LPSK prototype uses epoch time that can only measure to a

granularity of one second, But it is expected that a future version of the LPSK

will provide more granularity.

 Implement auditing of all 46 auditable events identified in this study.

C. CONCLUSION

The LPSK provides a high assurance platform that could potentially be used to

protect sensitive data in both public and private sectors. In order to ensure that

accountability policies are being enforced correctly, and that no one is abusing their

privileged access, there is a need for a mechanism to allow administrators to regularly

review events. The audit subsystem prototype developed in this study has demonstrated a

working mechanism to efficiently collect audit records and transfer them to an authorized

application, which will then store or process these records for viewing by an

 93

administrator. Even though the audit prototype is not yet a complete implementation, it

provides a good environment to study the various features of the audit design.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

APPENDIX

This appendix describes the test procedures for the test plan used in Chapter V.

A. DEVELOPMENTAL TESTING

Conditional test code was added to the LPSK modules to help to test the functions

exported by the audit subsystem. The test code invokes the audit functions using

different input arguments and sometimes under different conditions, prints debug

messages and displays values to the screen. To enable the test code, do the following:

1. Find the line “wcc386 kernel_ini2.c $(INC) $(CC_OPTS)” in the Makefile

and append the debug option “-DDEBUG_AUDIT_DEV” to the end of the

line.

2. Uncomment the line “#define AUDIT_ENABLED 1” and comment the line

“#define AUDIT_ENABLED 0” in the lpsk_audit.h file to enable audit.

3. Compile the LPSK code with the new Makefile.

4. Copy the compiled binary to the test VM and power it on.

After completing the above, the test code performs tests on various function calls

and prints the results to the screen. Table 34 describes the expected results for the tests

described in Chapter V when the audit is enabled. The function return code of

AUD_NO_ERR is defined as 0 and AUD_ERR_INVALID_PARAM is defined as 1.

Table 34. Testing Results of Interfaces to Kernel Modules when Audit is Enabled

Test ID Expected Results Summary

F1-1 F1-1: Return code = 1

F2-1 F2-1: Return code = 0

F2-3 F2-3: Return code = 1

F2-4 F2-4: Return code = 1

 96

F3-1 F3-1: Return code = 0

F4-1 F4-1: Return code = 0

F4-2 F4-2: Return code = 0

F4-3 F4-3: Return code = 1

F5-1 F5-1: Return code = 0

F6-1 F6-1: Return code = 0

F6-3 F6-3: Return code = 1

F6-4 F6-4: Return code = 1

F7-1 F7-1: Return code = 0

F7-3 F7-3: Return code = 1

F7-4 F7-4: Return code = 1

F8-1 F8-1: Return code = 0

F8-3 F8-3: Return code = 1

F8-4 F8-4: Return code = 1

F9-1 F9-1: Return code = 0

F9-3 F9-3: Return code = 1

F9-4 F9-4: Return code = 1

F10-1 F10-1: Return code = 0

F10-3 F10-3: Return code = 1

F10-4 F10-4: Return code = 1

F11-1 F11-1: Return code = 0

F11-3 F11-3: Return code = 1

F11-4 F11-4: Return code = 1

 97

Disable audit by doing the following:

1. Commenting the line “#define AUDIT_ENABLED 1”

2. Uncommenting the line “#define AUDIT_ENABLED 0” in the lpsk_audit.h

file.

3. Compile the LPSK code.

4. Copy the binary to the test VM and power it on.

Table 35 describes the expected results for the tests described in Chapter V when

the audit is disabled. The function return code of AUD_ERR_DISABLED is defined as

2.

Table 35. Testing Results of Interfaces to Kernel Modules when Audit is Disabled

Test ID Expected Results Summary

F1-2 F1-1: Return code = 0

F2-2 F2-1: Return code = 2

F3-2 F3-2: Return code = 2

F4-4 F4-4: Return code = 2

F5-2 F5-2: Return code = 2

F6-2 F6-2: Return code = 2

F7-2 F7-2: Return code = 2

F8-2 F8-2: Return code = 2

F8-3 F8-3: Return code = 2

F8-4 F8-4: Return code = 2

F9-2 F9-2: Return code = 2

F10-2 F10-2: Return code = 2

 98

F11-2 F11-2: Return code = 2

To test the functions exported by the audit subsystem to authorized subjects, take

the following steps:

1. Set the size of the Audit Buffer to 1024 bytes via the AUDIT_BUFF_SIZE

constant defined in lpsk_audit.h. Enable audit by setting the

AUDIT_ENABLED constant in lpsk_audit.h to TRUE. Compile the code

with “-DDEBUG_AUDIT_DEV” to generate audit events in the Audit Buffer

for testing.

2. Boot the Test Virtual Machine and login to Trusted Path Application

3. Select “F – Change Partition Focus” option from the menu

4. Select “1 – Audit Application” option from the menu

5. From the main menu of the audit test application perform the steps shown in

the “Menu Selection / Action” column of Table 36. The “Expected Results

Summary” column shows the expected message displayed by the test

application after each step has been performed.

Table 36. Testing Results of Interfaces to Audit Retrieval when Audit is Enabled

Test ID Menu Selection / Action Expected Results Summary

F13-1 Select “3 – Query size of audit buffer” Size of audit buffer = 1024

Return code = 0

(Remarks: return code 0 =

AUD_NO_ERR)

F14 -1 Select “4 – Query number of records in

the Audit Buffer”

Number of records in the buffer =

19

Return code = 0

 99

F12-1 Select “1 – Retrieve records”. Enter “1”

when asked to enter the number of

records to retrieve.

Number of records read = 1

Return code = 0

F12-2 Select “1 – Retrieve records”. Enter “3”

when asked to enter the number of

records to retrieve.

Number of records read = 3

Return code = 0

F12-7 Retrieve 13 more records and leave 2 in

the Audit Buffer. Select “1 – Retrieve

records”. Enter “3” when asked to enter

the number of records to retrieve.

Number of records read = 2

Return code = 0

F12-8 Press “Alt-Esc” to generate a SAK, and

then change the partition focus back to the

audit application. Repeat the above

mentioned action 5 times to generate 6

SAK events in the Audit Buffer. Select “1

– Retrieve records”. Enter “6” when

asked to enter the number of records to

retrieve.

Number of records read = 5

Return code = 0

(Remarks: the size of the buffer

provided by the test application is

128 bytes, which is only enough

to hold 5 SAK events of 22 bytes

each)

F12-4

F12-5

F13-3

F14-3

F15-3

F16-3

Select “7 – Exception Testing” F12-4: Return code = 1

F12-5: Return code = 5

F13-3: Return code = 1

F14-3: Return code = 1

F15-3: Return code = 1

F16-3: Return code = 1

(Remarks: Return code 1 =

AUD_ERR_INVALID_PARAM;

 100

Return code 5 =

AUD_ERR_SIZE_EXCEED)

F15-1 Select “6 – Query total number of records

generated”

Number of records generated =

25

Return code = 0

F16-1 Select “5 – Query number of overwritten

records”

Number of records overwritten =

0

Return code = 0

To perform the tests when audit is disabled, do the following:

1. Disable audit by setting the AUDIT_ENABLED constant in lpsk_audit.h to

FALSE.

2. Recompile the code and boot up the Test Virtual Machine.

3. Navigate to the audit test application main menu.

4. Perform the steps shown in the “Menu Selection / Action” column of Table

37.

Table 37. Testing Results of Interfaces to Audit Retrieval when Audit is Disabled

Test ID Menu Selection / Action Expected Results Summary

F12-3 Select “1 – Retrieve records”. Enter “1”

when asked to enter the number of records

to retrieve.

Return code = 2

(Remarks: return code 2 =

AUD_ERR_DISABLED)

F13-2 Select “3 – Query size of audit buffer” Return code = 2

F14-2 Select “4 – Query number of records in the

Audit Buffer”

Return code = 2

F15-2 Select “6 – Query total number of records Return code = 2

 101

generated”

F16-2 Select “5 – Query number of overwritten

records”

Return code = 2

B. ACCEPTANCE TESTING

The acceptance tests verified that audit records are generated for a set of

predefined events. The configuration vector needs to be configured to ensure that mseg,

dseg, sequencer and eventcount events are successfully generated during the acceptance

tests. Perform the following steps:

1. Insert the following lines in the LPSK initialization database file all_apps.pl0.

a. EVENTCOUNT = {"Event 0", 3, RW, RW, NA, RW, RW };

b. SEQUENCER = {"Seq 0", 3, RW, RW, NA, RW, RW };

2. Insert the following lines in the PL3 initialization database file all_apps.pl3

a. MSEG[0] = { 40000, 1, RW, RW, NA, RO, RO };

3. Create the configuration vector using the command line “vector -0 all_aps.pl0

-1 five_part.pl1 -2 five_part.pl2 -3 all_apps.pl3 –o all_apps”

4. Re-enable audit by setting the AUDIT_ENABLED constant in lpsk_audit.h to

TRUE.

5. Compile the code without the debug option.

6. Boot the Test Virtual Machine and navigate to the audit test application main

menu. Perform the steps shown in the “Menu Selection / Action” column of

Table 38.

 102

Table 38. Results of Acceptance Testing (Successful Events)

Test ID Menu Selection / Action Expected Results Summary

A-1 Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 8

Return code = 0

A-2 Select “1 – Retrieve records”. Enter “1”

when asked to enter the number of records

to retrieve.

Number of records read = 1

Return code = 0

 Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 7

Return code = 0

 Repeat A-2 until buffer is empty The number of records in the

Audit Buffer is decremented by

1 after each retrieval.

A-3 Select “2 – View records” to display and

manually inspect the audit records

Content of the audit records for

the following events

 start of LPSK audit

subsystem

 identifying information

of the configuration

vector

 Swap in of 2 dsegs

defined in the

configuration vector

 103

 Creation of 2 msegs

defined in the

configuration vector

 Successful completion

of LPSK initialization

 Successful startup of

LPSK runtime.

A-4 Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 0

Return code = 0

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus back to the

audit application.

Select “1 – Retrieve records”. Enter “1”

when asked to enter the number of records

to retrieve.

Number of records read = 1

Return code = 0

 Select “2 – View records” to display and

manually inspect the audit records

Content of the audit record for

the SAK event

A-5 Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 0

Return code = 0

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus to “3 –

Test Application”.

 Select “A – Test eventcounts and

Number of records read = 4

Return code = 0

(Remarks: The test program

will generate 2 sequencer

 104

sequencers” from the Test Menu.

 Enter ‘Q’ to quit the “read and advance

eventcount” test

 Enter ‘0’ when prompted to enter the

sequencer to ticket

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus back to

the audit application

 Select “1 – Retrieve records”. Enter “4”

when asked to enter the number of

records to retrieve.

events. The other 2 audit

records are generated by the

SAK events)

 Select “2 – View records” to display and

manually inspect the audit records

Content of the audit record for

the sequencer event

A-6 Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 0

Return code = 0

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus to “3 –

Test Application”.

 Enter ‘Q’ to quit the sequencer test

 Enter ‘Y’ to continue with the “Await

on Eventcount” test.

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus back to

the audit application

 Select “1 – Retrieve records”. Enter “3”

Number of records read = 3

Return code = 0

(Remarks: 2 of the audit records

are generated by the SAK

events)

 105

when asked to enter the number of

records to retrieve.

 Select “2 – View records” to display and

manually inspect the audit records

Content of the audit record for

the await on eventcount event

A-7 Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 0

Return code = 0

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus to “4 –

Test Support”.

 Enter ‘0’ when prompted for the

eventcount to advance.

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus back to

the audit application

 Select “1 – Retrieve records”. Enter “3”

when asked to enter the number of

records to retrieve.

Number of records read = 3

Return code = 0

(Remarks: 2 of the audit records

are generated by the SAK

events)

 Select “2 – View records” to display and

manually inspect the audit records

Content of the audit record for

the process woke up event

Shut down the Test Virtual Machine. To perform tests to verify that audit records

are generated for failed events, reconfigure the configuration vector by performing the

following steps:

1. Insert the following lines in all_apps.pl0

a. EVENTCOUNT = {"Event 0", 3, RW, RW, NA, NA, NA };

b. SEQUENCER = {"Seq 0", 3, RW, RW, NA, NA, NA };

 106

2. Create the configuration vector using the command line “vector -0 all_aps.pl0

-1 five_part.pl1 -2 five_part.pl2 -3 all_apps.pl3 –o all_apps”

3. Compile the code without the debug option.

4. Boot the Test Virtual Machine and navigate to the audit test application main

menu. Perform the steps shown in the “Menu Selection / Action” column of

Table 39.

Table 39. Results of Acceptance Testing (Failed Events)

Test ID Menu Selection / Action Expected Results Summary

A-8 Select “1 – Retrieve records”. Enter “6”

when asked to enter the number of records

to retrieve. The buffer provided by the test

application is not big enough to hold all 8

records. Repeat this step several times

until number of records read becomes 0.

All the records are read.

 Select “2 – View records” 8 times to

display all the audit records.

Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 0

Return code = 0

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus to “3 –

Test Application”.

 Select “A – Test eventcounts and

sequencers” from the Test Menu.

 Enter ‘Q’ to quit the “read and advance

Number of records read = 3

Return code = 0

(Remarks: 2 of the audit records

are generated by the SAK

events)

 107

eventcount” test

 Enter ‘0’ when prompted to enter the

sequencer to ticket

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus back to

the audit application

 Select “1 – Retrieve records”. Enter “3”

when asked to enter the number of

records to retrieve.

 Select “2 – View records” to display and

manually inspect the audit records

Content of the audit record for

the sequencer event

(Event modifier = 0x1)

A-9 Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 0

Return code = 0

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus to “3 –

Test Application”.

 Enter ‘Q’ to quit the sequencer test

 Enter ‘Y’ to continue with the “Await

on Eventcount” test.

 Press “Alt-Esc” to generate a SAK, and

then change the partition focus back to

the audit application

 Select “1 – Retrieve records”. Enter “3”

when asked to enter the number of

Number of records read = 3

Return code = 0

(Remarks: 2 of the audit records

are generated by the SAK

events)

 108

records to retrieve.

 Select “2 – View records” to display and

manually inspect the audit records

Content of the audit record for

the await on eventcount event

(Event modifier = 0x1)

Shut down the Test Virtual Machine. To perform testing of the Audit Buffer,

modify the size of the Audit Buffer by performing the following steps:

1. Modify the value of AUDIT_BUFF_SIZE constant in lpsk_audit.h to 512.

2. Recompile the code without the debug option.

3. Boot the Test Virtual Machine and navigate to the audit test application main

menu. Perform the steps shown in the “Menu Selection / Action” column in

Table 40.

Table 40. Results of Acceptance Testing (Audit Buffer)

Test ID Menu Selection / Action Expected Results Summary

A-10 Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 8

Return code = 0

 Press “Alt-Esc” to generate a SAK.

Repeat 10 times to generate 11 SAK

audit records.

 Change the partition focus back to the

audit application.

 Select “4 – Query number of records in

the Audit Buffer”

Number of records in the buffer

= 18

Return code = 0

 109

 Select “5 – Query number of overwritten

records”

Number of records overwritten

= 1

Return code = 0

Shut down the Test Virtual Machine and disable the audit by performing the

following steps:

1. Modify the value of AUDIT_ENABLED constant in lpsk_audit.h to FALSE.

2. Recompile the code without the debug option.

3. Boot up the Test Virtual Machine and navigate to the audit test application

main menu. Perform the steps shown in the “Menu Selection / Action”

column in Table 41.

Table 41. Results of Acceptance Testing when Audit is Disabled

Test ID Menu Selection / Action Expected Results Summary

B-1 Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 0

Return code = 2

 Select “1 – Retrieve records”. Enter “1”

when asked to enter the number of records

to retrieve.

Number of records in the buffer

= 0

Return code = 2

 Perform the tasks described in A-4 to A9.

Select “4 – Query number of records in the

Audit Buffer”

Number of records in the buffer

= 0

Return code = 2

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

LIST OF REFERENCES

[1] C. E. Irvine, T. E, Levin, P. C. Clark and T. D. Nguyen, “A Security Architecture
for Transient Trust,” in Proceedings of the 2nd ACM Workshop on Computer
Security Architectures, Alexandria, VA, 2008, pp. 1–8.

[2] C. E. Irvine, T. E. Levin, T. D. Nguyen, and G. W. Dinolt, “The Trusted
Computing Exemplar Project,” in Proceedings of the 5th IEEE Systems Man and
Cybernautics Information Assurance Workshop, West Point, NY, June 2004, pp.
109–115.

[3] IAD (Information Assurance Directorate), “U.S. Government Protection Profile
for Separation Kernels in Environments Requiring High Robustness,” National
Information Assurance Partnership, version 1.03 ed., 29 June 2007.

 [4] “Recommended Security Controls for Federal Information Systems,” National
Institute of Standards and Technology, 2009.

[5] P. C. Clark, D. J. Shifflett, C. E. Irvine, T. D. Nguyen, and T. E. Levin, “Trusted
Computing Exemplar Least Privilege Separation Kernel Product Functional
Specification,” Naval Postgraduate School Center for Information Systems
Security Studies and Research, 2010.

[6] J. M. Rushby, “Design and Verification of Secure Systems,” in ACM SIGOPS
Operating Systems Review, 15, 5, pp. 12–21, 1981.

 [7] J. H. Saltzer and M. D. Schroeder, “The Protection of Information in Operating
Systems,” in Proceedings of IEEE, 63, 9, pp. 1278–1308, 1975.

[8] “Common Criteria documentation,” July 2009,
http://www.commoncriteriaportal.org/cc.

[9] “Minimum Security Requirements for Federal Information and Information

Systems,” National Institute of Standards and Technology, FIPS-200, March
2006.

[10] “A Guide to Understanding Audits in Trusted System,” National Computer
Security Center, NCSC-TG-001, version 2, 1 June 1988.

[11] S. Harris, CISSP All in One Exam Guide (4th ed.). New York:McGraw-Hill,
2007.

[12] K. Kent, M. Souppaya, “Guide to Computer Security Log Management,” National
Institute of Standards and Technology, September 2006.

http://www.commoncriteriaportal.org/�

 112

[13] “Extensible Markup Language (XML) 1.0 (Fifth Edition),” 26 November 2008,
http://www.w3.org/TR/2008/REC-xml-20081126.

[14] “RFC3164 - The BSD Syslog Protocol,” August 2001,
http://www.faqs.org/rfcs/rfc3164.html.

[15] “Open Source Sendmail,” http://www.sendmail.org.

[16] “Event Log File Format,” 20 May 2010, http://msdn.microsoft.com/en-
us/library/bb309026(v=VS.85).aspx.

[17] “Trusted Solaris Audit Administration,” December 2000,
http://dlc.sun.com/pdf/805-8121/805-8121.pdf.

[18] “IEEE Std 1003.1,” 2004, http://www.unix.org/version3/ieee_std.html.

[19] “Vprobes Programming Reference,” 2008,
http://www.vmware.com/products/beta/ws/vprobes_reference.pdf.

[20] “Green Hills Software Integrity 178-B Separation Kernel Security Target,” 30
May 2008, http://www.niap-ccevs.org/st/st_vid10119-st.pdf.

[21] “LynxSecure Embedded Hypervisor and Separation Kernel,” 2010,
http://www.lynuxworks.com/virtualization/lynxsecure-hypervisor.pdf.

[22] “Wind River VxWorks,” http://www.windriver.com/products/vxworks.

http://www.w3.org/TR/2008/REC-xml-20081126�
http://www.faqs.org/rfcs/rfc3164.html�
http://www.sendmail.org/�
http://msdn.microsoft.com/en-us/library/bb309026(v=VS.85).aspx�
http://msdn.microsoft.com/en-us/library/bb309026(v=VS.85).aspx�
http://dlc.sun.com/pdf/805-8121/805-8121.pdf�
http://www.unix.org/version3/ieee_std.html�
http://www.vmware.com/products/beta/ws/vprobes_reference.pdf�
http://www.niap-ccevs.org/st/st_vid10119-st.pdf�
http://www.lynuxworks.com/virtualization/lynxsecure-hypervisor.pdf�
http://www.windriver.com/products/vxworks�

 113

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Professor Tat Soon Yeo
Temasek Defence Systems Institute (TDSI)
National University of Singapore

4. Ms Tan Lai Poh

Temasek Defence Systems Institute (TDSI)
National University of Singapore

5. Kris Britton

National Security Agency
Fort Meade, MD

6. John Campbell
National Security Agency
Fort Meade, MD

7. Deborah Cooper

DC Associates, LLC
Reston, VA

8. Grace Crowder

NSA
Fort Meade, MD

9. Louise Davidson
National Geospatial Agency
Bethesda, MD

10. Vincent J. DiMaria

National Security Agency
Fort Meade, MD

 114

11. Rob Dobry
 NSA
 Fort Meade, MD

12. Jennifer Guild

SPAWAR
Charleston, SC

13. CDR Scott Heller
 SPAWAR
 Charleston, SC

14. Dr. Steven King

ODUSD
Washington, DC

15. Steve LaFountain
 NSA
 Fort Meade, MD

16. Dr. Greg Larson
 IDA
 Alexandria, VA

17. Dr. Carl Landwehr

National Science Foundation
Arlington, VA

18. Dr. John Monastra

Aerospace Corporation
Chantilly, VA

19. John Mildner

SPAWAR
Charleston, SC

20. Dr. Victor Piotrowski

National Science Foundation
Arlington Virginia

21. Jim Roberts
Central Intelligence Agency

 Reston, VA

 115

22. Ed Schneider
 IDA
 Alexandria, VA

23. Mark Schneider

NSA
Fort Meade, MD

24. Keith Schwalm

Good Harbor Consulting, LLC
Washington, DC

25. Ken Shotting

NSA
Fort Meade, MD

26. Dr. Ralph Wachter
 ONR
 Arlington, VA

27. Dr. Cynthia E. Irvine
 Naval Postgraduate School
 Monterey, CA

28. Paul C. Clark
 Naval Postgraduate School
 Monterey, CA

29. Boon Pin Toh

Naval Postgraduate School
 Monterey, CA

	I. INTRODUCTION
	A. MOTIVATION
	B. PURPOSE OF STUDY
	C. ORGANIZATION OF PAPER

	II. BACKGROUND
	A. LEAST PRIVILEGE SEPARATION KERNEL
	1. Separation Kernel
	2. Principle of Least Privileged on Separation Kernel
	3. Trusted Computing Exemplar (TCX) Project

	B. AUDIT OVERVIEW
	1. Purpose of Audit
	2. Log Management Architecture
	3. Audit Records Standard

	C. SUMMARY

	III. REQUIREMENTS
	A. SECURITY AUDIT EVENT SELECTION
	B. SECURITY AUDIT AUTOMATIC RESPONSE
	C. SECURITY AUDIT DATA GENERATION
	D. SECURITY AUDIT REVIEW
	E. SUMMARY

	IV. DESIGN AND IMPLEMENTATION
	A. HIGH LEVEL DESIGN
	1. Overview
	2. Starting and Stopping the Audit Subsystem

	B. AUDIT RECORD FORMATS
	1. Types of Audit Record Format
	a. Syslog
	b. XML
	c. Database
	d. Binary Format

	2. Selection of an Audit Log Format for LPSK
	3. LPSK Audit Record Format
	a. Overview
	b. Audit Record Structure
	c. Tokens
	(1) Header Token. A header token marks the beginning of each audit record. It contains the following fields in the order that they are listed.
	(2) Trailer Token. The trailer token marks the end of a record. It contains the following fields in the order that they are listed.
	(3) Argument Token. The argument token contains information about argument values passed to a kernel function. It contains the following fields in the order that they are listed.
	(4) Configuration Vector Token. The configuration vector token contains information to identify the configuration vector used to initialize the LPSK. It contains the following fields in the order that they are listed.
	(5) Device Token. The device token contains information about the device. It contains the following fields in the order that they are listed.
	(6) Dseg Token. The dseg token contains information about the data segments. It contains the following fields in the order that they are listed.
	(7) Eventcount Token. The evencount token contains information about the eventcount. It contains the following fields in the order that they are listed.
	(8) Interrupt Token. The interrupt token contains information about the interrupts. The Intel x86 architecture provides a total of 256 interrupts, whereeach is identified by a unique interrupt number. The token contains the following fields in the order that they are listed.
	(9) MAC Token. The MAC Token contains information about the Media Access Control (MAC) address. It contains the following fields in the order that they are listed.
	(10) Mseg Token. The Mseg token contains information about the memory segment. It contains the following fields in the order that they are listed.
	(11) Partition Token. A partition token contains information to identify a partition. It contains the following fields in the order that they are listed.
	(12) Process Token. A process token contains information to identify a process. It contains the following fields in the order that they are listed.
	(13) Return Token. The return token contains the return status of a kernel function call. It contains the following fields in the order that they are listed.
	(15) Signal Token. The signal token contains information to identify a signal channel. It contains the following fields in the order that they are listed.
	A signal is an abstract communication mechanism implemented by the LPSK to allow a subject to communicate with another subject via the recipient’s signal channel. Each subject can have a maximum of 32 signal channels. A signal token is usually used together with subject tokens to provide information about the sender and receiver of a signal.
	(16) Subject Token. The subject token contains information to identify a subject. It contains the following fields in the order that they are listed.
	The hardware privilege level is the Intel PL to which the subject was allocated during initialization.
	(17) Text Token. The text token describes a text string. It contains the following fields in the order that they are listed.

	4. Event Classes and Identifier

	C. DESIGN OF AUDIT GENERATION AND COLLECTION
	1. Overview
	2. Determination of Auditable Events
	3. Audit Module Interfaces

	 D. AUDIT MODULE INTERFACES IMPLEMENTATION
	1. Interfaces to Kernel Modules
	2. Exported LPSK Audit Interfaces

	E. AUDIT BUFFER IMPLEMENTATION

	V. TESTING
	A. DEVELOPMENTAL TESTING
	1. Testing of Interfaces to Kernel Modules
	2. Testing of Exported Interfaces to Audit Retrieval
	3. Testing of Audit Buffer

	B. ACCEPTANCE TESTING

	VI. CONCLUSION
	A. RELATED WORK
	B. FUTURE WORK
	1. Abstraction of Audit Subsystem as a Device
	2. Audit Review
	3. Performance Study
	4. Implementation of Unfinished Work

	C. CONCLUSION

	APPENDIX
	A. DEVELOPMENTAL TESTING
	B. ACCEPTANCE TESTING

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

